# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch os.system('nvidia-smi') # os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip') print(torch.backends.cudnn.version()) import importlib import sys dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py' def modify_dynamic_modules_file(dynamic_modules_file): if os.path.exists(dynamic_modules_file): with open(dynamic_modules_file, 'r') as file: lines = file.readlines() with open(dynamic_modules_file, 'w') as file: for line in lines: if "from huggingface_hub import cached_download" in line: file.write("from huggingface_hub import hf_hub_download, model_info\n") else: file.write(line) modify_dynamic_modules_file(dynamic_modules_file1) modify_dynamic_modules_file(dynamic_modules_file2) import sys import argparse import gradio as gr import numpy as np import torchaudio import random import librosa from funasr import AutoModel from funasr.utils.postprocess_utils import rich_transcription_postprocess ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR)) from modelscope import snapshot_download snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B') snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd') os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && tar -xvf resource.tar') from cosyvoice.cli.cosyvoice import CosyVoice2 from cosyvoice.utils.file_utils import load_wav, logging from cosyvoice.utils.common import set_all_random_seed inference_mode_list = ['3s Speedy Convertion', 'Natural Language Control'] instruct_dict = {'3s Speedy Convertion': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input prompt transcription\n3. click \'Speech Synthesis\' button', 'Natural Language Control': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input instruct\n3. click \'Speech Synthesis\' button'} stream_mode_list = [('No', False), ('Yes', True)] max_val = 0.8 def generate_seed(): seed = random.randint(1, 100000000) return { "__type__": "update", "value": seed } def postprocess(speech, top_db=60, hop_length=220, win_length=440): speech, _ = librosa.effects.trim( speech, top_db=top_db, frame_length=win_length, hop_length=hop_length ) if speech.abs().max() > max_val: speech = speech / speech.abs().max() * max_val speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1) return speech def change_instruction(mode_checkbox_group): return instruct_dict[mode_checkbox_group] def prompt_wav_recognition(prompt_wav): res = asr_model.generate(input=prompt_wav, language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech" use_itn=True, ) text = res[0]["text"].split('|>')[-1] return text def generate_audio(tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream): sft_dropdown, speed = '', 1.0 if prompt_wav_upload is not None: prompt_wav = prompt_wav_upload elif prompt_wav_record is not None: prompt_wav = prompt_wav_record else: prompt_wav = None # if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode if mode_checkbox_group in ['Natural Language Control']: if instruct_text == '': gr.Warning('You are using Natural Language Control mode, please input the instruct.') yield (target_sr, default_data) if prompt_wav is None: gr.Info('You are using Natural Language Control mode, please upload the prompt audio.') # if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language if mode_checkbox_group in ['Cross-lingual Convertion']: if cosyvoice.frontend.instruct is True: gr.Warning('You are using the cross-lingual Convertion mode. The {} model does not support this mode. Please use the iic/CosyVoice-300M model.'.format(args.model_dir)) yield (target_sr, default_data) if instruct_text != '': gr.Info('You are using the cross-lingual Convertion mode. The instruct text will be ignored.') if prompt_wav is None: gr.Warning('You are using the cross-lingual Convertion mode. Please provide the prompt audio.') yield (target_sr, default_data) gr.Info('You are using the cross-lingual Convertion mode. Please ensure that the synthesis text and prompt text are in different languages.') # if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements if mode_checkbox_group in ['3s Speedy Convertion', 'Cross-lingual Convertion']: if prompt_wav is None: gr.Warning('Empty prompt found, please check the prompt text.') yield (target_sr, default_data) if torchaudio.info(prompt_wav).sample_rate < prompt_sr: gr.Warning('prompt wav sample rate {}, lower than {}.'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr)) yield (target_sr, default_data) # sft mode only use sft_dropdown if mode_checkbox_group in ['Pretrained Voice']: if instruct_text != '' or prompt_wav is not None or prompt_text != '': gr.Info('You are using Pretrained Voice mode. Pretrained Voice/Instruct will be ingnored.') # zero_shot mode only use prompt_wav prompt text if mode_checkbox_group in ['3s Speedy Convertion']: if prompt_text == '': gr.Warning('Empty prompt found, please check the prompt text.') yield (target_sr, default_data) if instruct_text != '': gr.Info('You are using 3s Speedy Convertion mode. Pretrained Voice/Instruct will be ingnored.') info = torchaudio.info(prompt_wav) if info.num_frames / info.sample_rate > 10: gr.Warning('Please use prompt audio shorter than 10s.') yield (target_sr, default_data) if mode_checkbox_group == 'Pretrained Voice': logging.info('get sft inference request') set_all_random_seed(seed) for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == '3s Speedy Convertion': logging.info('get zero_shot inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) elif mode_checkbox_group == 'Cross-lingual Convertion': logging.info('get cross_lingual inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) else: logging.info('get instruct inference request') prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr)) set_all_random_seed(seed) for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream, speed=speed): yield (target_sr, i['tts_speech'].numpy().flatten()) def main(): with gr.Blocks() as demo: gr.Markdown("### Repo [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \ Pretrained Model [CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \ [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \ [CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \ [CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)") gr.Markdown("#### Please input the text to synthesize, choose inference mode and follow the controlling steps below.") tts_text = gr.Textbox(label="Text to synthesize", lines=1, value="CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities. CosyVoice迎来全面升级,提供更准、更稳、更快、 更好的语音生成能力。") with gr.Row(): mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='Inference Mode', value=inference_mode_list[0]) instruction_text = gr.Text(label="Instructions", value=instruct_dict[inference_mode_list[0]], scale=0.5) stream = gr.Radio(choices=stream_mode_list, label='Streaming or not', value=stream_mode_list[0][1]) with gr.Column(scale=0.25): seed_button = gr.Button(value="\U0001F3B2") seed = gr.Number(value=0, label="Random Seed") with gr.Row(): prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='Prompt wav file (sample rate >= 16kHz)') prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='Record prompt from your microphone') prompt_text = gr.Textbox(label="Prompt Transcription", lines=1, placeholder="Prompt transcription (auto ASR, you can correct the recognition results)", value='') instruct_text = gr.Textbox(label="Instruct", lines=1, placeholder="Instruct transcription. e.g. A old sea captain, navigates life's storms with timeless wisdom and a heart of gold.", value='') generate_button = gr.Button("Speech Synthesis") audio_output = gr.Audio(label="Audio Output", autoplay=True, streaming=True) seed_button.click(generate_seed, inputs=[], outputs=seed) generate_button.click(generate_audio, inputs=[tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text, seed, stream], outputs=[audio_output]) mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text]) prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text]) prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text]) demo.launch(max_threads=4) if __name__ == '__main__': load_jit = True if os.environ.get('jit') == '1' else False load_onnx = True if os.environ.get('onnx') == '1' else False load_trt = True if os.environ.get('trt') == '1' else False logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt)) cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, load_trt=load_trt) sft_spk = cosyvoice.list_avaliable_spks() prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000) for stream in [True, False]: for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)): continue prompt_sr, target_sr = 16000, 24000 default_data = np.zeros(target_sr) model_dir = "iic/SenseVoiceSmall" asr_model = AutoModel( model=model_dir, disable_update=True, log_level='DEBUG', device="cuda:0") main()