# Copyright (C) 2021-2024, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import numpy as np import torch from doctr.models import ocr_predictor from doctr.models.predictor import OCRPredictor DET_ARCHS = [ "fast_base", "fast_small", "fast_tiny", "db_resnet50", "db_resnet34", "db_mobilenet_v3_large", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50", ] RECO_ARCHS = [ "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large", "master", "sar_resnet31", "vitstr_small", "vitstr_base", "parseq", ] def load_predictor( det_arch: str, reco_arch: str, assume_straight_pages: bool, straighten_pages: bool, export_as_straight_boxes: bool, disable_page_orientation: bool, disable_crop_orientation: bool, bin_thresh: float, box_thresh: float, device: torch.device, ) -> OCRPredictor: """Load a predictor from doctr.models Args: det_arch: detection architecture reco_arch: recognition architecture assume_straight_pages: whether to assume straight pages or not straighten_pages: whether to straighten rotated pages or not export_as_straight_boxes: whether to export boxes as straight or not disable_page_orientation: whether to disable page orientation or not disable_crop_orientation: whether to disable crop orientation or not bin_thresh: binarization threshold for the segmentation map box_thresh: minimal objectness score to consider a box device: torch.device, the device to load the predictor on Returns: instance of OCRPredictor """ predictor = ocr_predictor( det_arch, reco_arch, pretrained=True, assume_straight_pages=assume_straight_pages, straighten_pages=straighten_pages, export_as_straight_boxes=export_as_straight_boxes, detect_orientation=not assume_straight_pages, disable_page_orientation=disable_page_orientation, disable_crop_orientation=disable_crop_orientation, ).to(device) predictor.det_predictor.model.postprocessor.bin_thresh = bin_thresh predictor.det_predictor.model.postprocessor.box_thresh = box_thresh return predictor def forward_image(predictor: OCRPredictor, image: np.ndarray, device: torch.device) -> np.ndarray: """Forward an image through the predictor Args: predictor: instance of OCRPredictor image: image to process device: torch.device, the device to process the image on Returns: segmentation map """ with torch.no_grad(): processed_batches = predictor.det_predictor.pre_processor([image]) out = predictor.det_predictor.model(processed_batches[0].to(device), return_model_output=True) seg_map = out["out_map"].to("cpu").numpy() return seg_map