from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from langchain.chat_models import ChatOpenAI import os from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, ) from langchain.schema import SystemMessage openai_api_key = os.environ.get('OPENAI_API_KEY') chatllm = ChatOpenAI(openai_api_key=openai_api_key, temperature=0.9, model='gpt-3.5-turbo-1106') sys_prompt = ChatPromptTemplate.from_messages( [ SystemMessage( content="You are a conversational helper, you often give witty, smart, and sarcastic replies in a polite and professional tone in the user's language to {conversational_text}. Always give a list of possible replies as a human." ), MessagesPlaceholder( variable_name="chat_history" ), HumanMessagePromptTemplate.from_template( "{conversational_text}" ), ] ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chat_llm_chain = LLMChain( llm=chatllm, prompt=sys_prompt, verbose=True, memory=memory, ) def get_langchain_response(input_text): return chat_llm_chain.run(input_text)