# import gradio as gr # import tensorflow as tf # import requests # import os # import numpy as np # import pandas as pd # import huggingface_hub # from huggingface_hub import Repository # from datetime import datetime # import scipy.ndimage.interpolation as inter # import datasets # from datasets import load_dataset, Image # from PIL import Image # from paddleocr import PaddleOCR # from doctr.io import DocumentFile # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use GPU 0, adjust if needed # os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true" # from doctr.models import ocr_predictor # model = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True) # """ # Perform OCR with doctr # """ # def ocr_with_doctr(file): # text_output = '' # # Load the document # doc = DocumentFile.from_pdf(file) # # Perform OCR # result = ocr_model(doc) # # Extract text from OCR result # for page in result.pages: # for block in page.blocks: # for line in block.lines: # text_output += " ".join([word.value for word in line.words]) + "\n" # return text_output # """ # Paddle OCR # """ # def ocr_with_paddle(img): # finaltext = '' # ocr = PaddleOCR(lang='en', use_angle_cls=True, use_gpu=True) # # img_path = 'exp.jpeg' # result = ocr.ocr(img) # for i in range(len(result[0])): # text = result[0][i][1][0] # finaltext += ' '+ text # return finaltext # def generate_ocr(Method, file): # text_output = '' # if isinstance(file, bytes): # Handle file uploaded as bytes # file = io.BytesIO(file) # if file.name.endswith('.pdf'): # # Perform OCR on the PDF using doctr # text_output = ocr_with_doctr(file) # else: # # Handle image file # img_np = np.array(Image.open(file)) # text_output = generate_text_from_image(Method, img_np) # return text_output # def generate_text_from_image(Method, img): # text_output = '' # if Method == 'PaddleOCR': # text_output = ocr_with_paddle(img) # return text_output # import gradio as gr # image_or_pdf = gr.File(label="Upload an image or PDF") # method = gr.Radio(["PaddleOCR"], value="PaddleOCR") # output = gr.Textbox(label="Output") # demo = gr.Interface( # generate_ocr, # [method, image_or_pdf], # output, # title="Optical Character Recognition", # css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", # article="""

Feel free to give us your thoughts on this demo and please contact us at # letstalk@pragnakalp.com #

Developed by: Pragnakalp Techlabs

""" # ) # demo.launch(share=True) import paddle print("PaddlePaddle Version:", paddle.__version__) print("Is GPU available:", paddle.is_compiled_with_cuda()) import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) import tensorflow as tf print(tf.test.is_built_with_cuda())