import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the models tokenizer_sql = AutoTokenizer.from_pretrained("juierror/flan-t5-text2sql-with-schema-v2") model_sql = AutoModelForSeq2SeqLM.from_pretrained("juierror/flan-t5-text2sql-with-schema-v2") tokenizer_question = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") model_question = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") # Function to create the prompt for SQL model def get_prompt_sql(tables, question): return f"""convert question and table into SQL query. tables: {tables}. question: {question}""" # Function to prepare input data for the SQL model def prepare_input_sql(question: str, tables: dict): tables = [f"""{table_name}({','.join(tables[table_name])})""" for table_name in tables] tables = ", ".join(tables) prompt = get_prompt_sql(tables, question) input_ids = tokenizer_sql(prompt, max_length=512, return_tensors="pt").input_ids return input_ids # Inference function for the SQL model def inference_sql(question: str, tables: dict) -> str: input_data = prepare_input_sql(question=question, tables=tables) input_data = input_data.to(model_sql.device) outputs = model_sql.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512) return tokenizer_sql.decode(outputs[0], skip_special_tokens=True) # Function to create the prompt for Question Generation model def get_prompt_question(context): return f"generate a question from the following context: {context}" # Function to prepare input data for the Question Generation model def prepare_input_question(context: str): prompt = get_prompt_question(context) input_ids = tokenizer_question(prompt, max_length=512, return_tensors="pt").input_ids return input_ids # Inference function for the Question Generation model def inference_question(context: str) -> str: input_data = prepare_input_question(context) input_data = input_data.to(model_question.device) outputs = model_question.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512) return tokenizer_question.decode(outputs[0], skip_special_tokens=True) # Streamlit UI def main(): st.title("Multi-Model: Text to SQL and Question Generation") # Model selection model_choice = st.selectbox("Select a model", ["Text to SQL", "Question Generation"]) # Input question and table schema for SQL model if model_choice == "Text to SQL": st.subheader("Text to SQL Model") question = st.text_area("Enter your question:") tables_input = st.text_area("Enter table schemas (in JSON format):", '{"people_name": ["id", "name"], "people_age": ["people_id", "age"]}') try: tables = eval(tables_input) # Convert string to dict safely except: tables = {} if st.button("Generate SQL Query"): if question and tables: sql_query = inference_sql(question, tables) st.write(f"Generated SQL Query: {sql_query}") else: st.write("Please enter both a question and table schemas.") # Input context for Question Generation model elif model_choice == "Question Generation": st.subheader("Question Generation Model") context = st.text_area("Enter context:") if st.button("Generate Question"): if context: generated_question = inference_question(context) st.write(f"Generated Question: {generated_question}") else: st.write("Please enter context for question generation.") if __name__ == "__main__": main()