import uvicorn import streamlit as st import streamlit.components.v1 as components from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from transformers import MBartForConditionalGeneration, MBartTokenizer, MBartConfig # Load and display index.html html_string = open('index.html', 'r').read() components.html(html_string, height=st.beta_container().container.height) # Load model and tokenizer at startup MODEL_PATH = "GobLyne/Rumi-Jawi-Translater" # Path to your model folder tokenizer = MBartTokenizer.from_pretrained(MODEL_PATH) model = MBartForConditionalGeneration.from_pretrained(MODEL_PATH) app = FastAPI() # List of allowed origins (the frontend URL you are serving the HTML from) origins = [ "http://127.0.0.1:5500", # Your frontend origin (adjust port if needed) "http://localhost:5500", # Another common frontend origin "https://goblyne.github.io/Jawi-Baru-Transliteration/", "http://35.175.72.198:8501", "http://10.27.69.196:8501", "http://localhost:8501", "https://huggingface.co/spaces/GobLyne/Jawi-Translation", VM89 about:srcdoc:4 POST https://huggingface.co/spaces/GobLyne/Jawi-Translation/translate net::ERR_FAILED VM89 about:srcdoc:19 Error: TypeError: Failed to fetch at translateText (VM89 about:srcdoc:4:32) at HTMLButtonElement. (VM89 about:srcdoc:68:38) " ] # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=origins, # Allow these origins allow_credentials=True, allow_methods=["*"], # Allow all HTTP methods (GET, POST, etc.) allow_headers=["*"], # Allow all headers ) # Input model for translation class TranslationRequest(BaseModel): text: str @app.get('/') def index(): return {'message': 'Jawi Translater API'} @app.post("/translate") async def translate(data: TranslationRequest): sentence = data.text.strip() if not sentence: raise HTTPException(status_code=400, detail="No text provided for translation") try: # Translate the text inputs = tokenizer(sentence, return_tensors="pt") translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ar_AR"], early_stopping=True, max_length=120) pred = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] pred = pred.replace("ar_AR", "").strip() return {"translated_text": pred} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Run with this command inside terminal # uvicorn main:app --reload