import pdb_featureVector import alphafold_featureVector import argparse from huggingface_hub import hf_hub_download import streamlit as st print('I AM HERE GOD DAMN IT') st.write('I AM HERE GOD DAMN IT') path = hf_hub_download(repo_id="HuBioDataLab/AlphafoldStructures", filename="AF-A0A075B6Y9-F1-model_v4.pdb.gz",repo_type = 'dataset') st.write(path) pdb_path= hf_hub_download(repo_id="HuBioDataLab/AlphafoldStructures",repo_type = 'dataset', filename="AF-A0A075B6Y9-F1-model_v4.pdb.gz") import gzip st.write('HER') with gzip.open(pdb_path, mode="rt") as f: file_content = f.read() st.write(file_content) st.write('REH') parser = argparse.ArgumentParser(description='ASCARIS') parser.add_argument('-s', '--source_option', help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures', default=1) parser.add_argument('-i', '--input_datapoint', help='Input file or query datapoint\n Option 1: Comma-separated list of idenfiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path') parser.add_argument('-impute', '--imputation_state', default='True', help='Whether resulting feature vector should be imputed or not. Default True.') args = parser.parse_args() input_set = args.input_datapoint mode = args.source_option impute = args.imputation_state def run_featureVector(input_set, mode, impute): print('*****************************************') print('Feature vector generation is in progress. \nPlease check log file for updates..') print('*****************************************') mode = int(mode) if mode == 1: pdb_featureVector.pdb(input_set, mode, impute) elif mode == 2: alphafold_featureVector.alphafold(input_set, mode, impute) if __name__ == '__main__': run_featureVector(input_set, mode, impute)