import streamlit as st import pandas as pd from os import path import sys import streamlit.components.v1 as components sys.path.append('code/') import pdb_featureVector import alphafold_featureVector import argparse from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode import base64 from huggingface_hub import hf_hub_download import streamlit as st import gzip showWarningOnDirectExecution = False def convert_df(df): return df.to_csv(index=False).encode('utf-8') if 'visibility' not in st.session_state: st.session_state['visibility'] = 'visible' st.session_state.disabled = False original_title = '
ASCARIS
' st.markdown(original_title, unsafe_allow_html=True) original_title = '(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)
' st.markdown(original_title, unsafe_allow_html=True) st.write('') st.write('') st.write('') st.write('') with st.form('mform', clear_on_submit=False): source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2]) #source = 1 impute = st.selectbox('Imputation',[True, False]) input_data = st.text_input('Enter SAV data points (Example: Q00889-H-85-D, or Q00889-H-85-D,Q16363-Y-498-H)') parser = argparse.ArgumentParser(description='ASCARIS') #parser.add_argument('-s', '--source_option', # help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures', # default=1) #parser.add_argument('-i', '--input_datapoint', # help='Input file or query datapoint\n Option 1: Comma-separated list of identifiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or Q9Y4W6-N-432-T, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path') # #parser.add_argument('-impute', '--imputation_state', default='True', # help='Whether resulting feature vector should be imputed or not. Default True.') #args = parser.parse_args() input_set = input_data ###mode = 1 impute = impute submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False) print('*****************************************') print('Feature vector generation is in progress. \nPlease check log file for updates..') print('*****************************************') #mode = int(mode) mode = int(source) selected_df = pd.DataFrame() st.write('The online tool may be slow, especially while processing multiple SAVs, please consider using the local programmatic version at https://github.com/HUBioDataLab/ASCARIS/') if submitted: with st.spinner('In progress...This may take a while...'): try: if mode == 1: selected_df = pdb_featureVector.pdb(input_set, mode, impute) elif mode == 2: selected_df = alphafold_featureVector.alphafold(input_set, mode, impute) else: selected_df = pd.DataFrame() except: selected_df = pd.DataFrame() pass if selected_df is None: st.success('Feature vector failed. Check log file.') else: if len(selected_df) != 0 : st.write(selected_df) st.success('Feature vector successfully created.') csv = convert_df(selected_df) st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv') else: st.success('Feature vector failed. Check log file.')