__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] import gradio as gr import pandas as pd import re import pandas as pd import os import json import yaml from src.about import * from src.bin.PROBE import run_probe global data_component, filter_component def get_baseline_df(): df = pd.read_csv(CSV_RESULT_PATH) present_columns = ["Method"] + checkbox_group.value df = df[present_columns] return df def add_new_eval( human_file, skempi_file, model_name_textbox: str, revision_name_textbox: str, benchmark_type, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset, ): representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset) return None block = gr.Blocks() with block: gr.Markdown( LEADERBOARD_INTRODUCTION ) with gr.Tabs(elem_classes="tab-buttons") as tabs: # table jmmmu bench with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1): # selection for column part: checkbox_group = gr.CheckboxGroup( choices=TASK_INFO, label="Benchmark Type", interactive=True, ) # user can select the evaluation dimension baseline_value = get_baseline_df() baseline_header = ["Method"] + checkbox_group.value baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value) data_component = gr.components.Dataframe( value=baseline_value, headers=baseline_header, type="pandas", datatype=baseline_datatype, interactive=False, visible=True, ) # table 5 with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2): with gr.Row(): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Row(): gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text") with gr.Row(): with gr.Column(): model_name_textbox = gr.Textbox( label="Model name", ) revision_name_textbox = gr.Textbox( label="Revision Model Name", ) # Selection for benchmark type from (similartiy, family, function, affinity) to eval the representations (chekbox) benchmark_type = gr.CheckboxGroup( choices=TASK_INFO, label="Benchmark Type", interactive=True, ) similarity_tasks = gr.CheckboxGroup( choices=similarity_tasks_options, label="Select Similarity Tasks", interactive=True, ) # Dropdown for function prediction aspect function_prediction_aspect = gr.Radio( choices=function_prediction_aspect_options, label="Select Function Prediction Aspect", interactive=True, ) # Dropdown for function prediction dataset function_prediction_dataset = gr.Radio( choices=function_prediction_dataset_options, label="Select Function Prediction Dataset", interactive=True, ) # Checkbox for family prediction dataset family_prediction_dataset = gr.CheckboxGroup( choices=family_prediction_dataset_options, label="Select Family Prediction Dataset", interactive=True, ) with gr.Column(): human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath') skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath') submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, inputs = [ human_file, skempi_file, model_name_textbox, revision_name_textbox, benchmark_type, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset, ], ) def refresh_data(): value = get_baseline_df() return value with gr.Row(): data_run = gr.Button("Refresh") data_run.click( refresh_data, outputs=[data_component] ) with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", show_copy_button=True, ) block.launch()