import gradio as gr import pandas as pd import re import os import json import yaml import matplotlib.pyplot as plt import seaborn as sns import plotnine as p9 import sys script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append('..') sys.path.append('.') from about import * global data_component, filter_component def get_baseline_df(selected_methods, selected_metrics): df = pd.read_csv(CSV_RESULT_PATH) present_columns = ["method_name"] + selected_metrics df = df[df['method_name'].isin(selected_methods)][present_columns] return df def get_method_color(method): return color_dict.get(method, 'black') # If method is not in color_dict, use black def set_colors_and_marks_for_representation_groups(ax): for label in ax.get_xticklabels(): text = label.get_text() color = group_color_dict.get(text, 'black') # Default to black if label not in dict label.set_color(color) label.set_fontweight('bold') # Add a caret symbol to specific labels if text in {'MUT2VEC', 'PFAM', 'GENE2VEC', 'BERT-PFAM'}: label.set_text(f"^ {text}") def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric): if benchmark_type == 'flexible': # Use general visualizer logic return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric) elif benchmark_type == 'similarity': title = f"{x_metric} vs {y_metric}" return draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title) elif benchmark_type == 'Benchmark 3': return benchmark_3_plot(x_metric, y_metric) elif benchmark_type == 'Benchmark 4': return benchmark_4_plot(x_metric, y_metric) else: return "Invalid benchmark type selected." def general_visualizer(methods_selected, x_metric, y_metric): df = pd.read_csv(CSV_RESULT_PATH) filtered_df = df[df['method_name'].isin(methods_selected)] # Create a Seaborn lineplot with method as hue plt.figure(figsize=(10, 8)) # Increase figure size sns.lineplot( data=filtered_df, x=x_metric, y=y_metric, hue="method_name", # Different colors for different methods marker="o", # Add markers to the line plot ) # Add labels and title plt.xlabel(x_metric) plt.ylabel(y_metric) plt.title(f'{y_metric} vs {x_metric} for selected methods') plt.grid(True) # Save the plot to display it in Gradio plot_path = "plot.png" plt.savefig(plot_path) plt.close() return plot_path def draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title): df = pd.read_csv(CSV_RESULT_PATH) # Filter the dataframe based on selected methods filtered_df = df[df['method_name'].isin(methods_selected)] def get_method_color(method): return color_dict.get(method.upper(), 'black') # Add a new column to the dataframe for the color filtered_df['color'] = filtered_df['method_name'].apply(get_method_color) adjust_text_dict = { 'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5), 'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center', 'force_text': (.0, 1.), 'force_objects': (.0, 1.), 'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True } # Create the scatter plot using plotnine (ggplot) g = (p9.ggplot(data=filtered_df, mapping=p9.aes(x=x_metric, # Use the selected x_metric y=y_metric, # Use the selected y_metric color='color', # Use the dynamically generated color label='method_name')) # Label each point by the method name + p9.geom_point(size=3) # Add points with no jitter, set point size + p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points + p9.labs(title=title, x=f"{x_metric}", y=f"{y_metric}") # Dynamic labels for X and Y axes + p9.scale_color_identity() # Use colors directly from the dataframe + p9.theme(legend_position='none', figure_size=(8, 8), # Set figure size axis_text=p9.element_text(size=10), axis_title_x=p9.element_text(size=12), axis_title_y=p9.element_text(size=12)) ) # Save the plot as an image save_path = "./plot_images" # Ensure this folder exists or adjust the path os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png") g.save(filename=filename, dpi=400) return filename def visualize_aspect_metric_clustermap(file_path, aspect, metric, method_names): # Load data df = pd.read_csv(file_path) # Filter for selected methods df = df[df['Method'].isin(method_names)] # Filter columns for specified aspect and metric columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")] df = df[['Method'] + columns_to_plot] df.set_index('Method', inplace=True) # Create clustermap g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=False, col_cluster=False, figsize=(15, 15)) # Get heatmap axis and customize labels ax = g.ax_heatmap ax.set_xlabel("") ax.set_ylabel("") # Apply color and caret adjustments to x-axis labels set_colors_and_marks_for_representation_groups(ax) # Save the plot as an image os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png") plt.savefig(filename, dpi=400, bbox_inches='tight') plt.close() # Close the plot to free memory return filename