import cv2 import numpy as np import gradio as gr # Additional filter functions def apply_gaussian_blur(frame): return cv2.GaussianBlur(frame, (15, 15), 0) def apply_sharpening_filter(frame): kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) return cv2.filter2D(frame, -1, kernel) def apply_edge_detection(frame): return cv2.Canny(frame, 100, 200) def apply_invert_filter(frame): return cv2.bitwise_not(frame) def adjust_brightness_contrast(frame, alpha=1.0, beta=50): return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta) def apply_grayscale_filter(frame): return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) def apply_sepia_filter(frame): sepia_filter = np.array([ [0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189] ]) return cv2.transform(frame, sepia_filter) def apply_fall_filter(frame): fall_filter = np.array([ [0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131] ]) return cv2.transform(frame, fall_filter) # New filter functions def apply_vintage_filter(frame): # Convert to float for processing frame_float = frame.astype(float) # Adjust color balance for vintage look frame_float[:,:,0] *= 1.3 # Boost blue channel frame_float[:,:,2] *= 0.8 # Reduce red channel # Add slight sepia tone frame_float = cv2.transform(frame_float, np.array([ [0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189] ])) # Add vignette effect rows, cols = frame.shape[:2] kernel_x = cv2.getGaussianKernel(cols, cols/2) kernel_y = cv2.getGaussianKernel(rows, rows/2) kernel = kernel_y * kernel_x.T mask = kernel / kernel.max() # Apply vignette for i in range(3): frame_float[:,:,i] *= mask return np.clip(frame_float, 0, 255).astype(np.uint8) def apply_pencil_sketch(frame): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (7,7), 0) edges = cv2.Laplacian(blur, cv2.CV_8U, ksize=5) ret, sketch = cv2.threshold(edges, 70, 255, cv2.THRESH_BINARY_INV) return sketch def apply_cartoon_effect(frame): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blur = cv2.medianBlur(gray, 5) edges = cv2.adaptiveThreshold(blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9) color = cv2.bilateralFilter(frame, 9, 300, 300) cartoon = cv2.bitwise_and(color, color, mask=edges) return cartoon def apply_watercolor(frame): # Bilateral filter with strong parameters for painting-like effect bilateral = cv2.bilateralFilter(frame, 9, 150, 150) # Enhance edges edge = cv2.edgePreservingFilter(bilateral, flags=1, sigma_s=60, sigma_r=0.6) return edge # Main filter application function def apply_filter(filter_type, input_image=None, intensity=1.0): if input_image is not None: frame = input_image else: cap = cv2.VideoCapture(0) ret, frame = cap.read() cap.release() if not ret: return "Web kameradan görüntü alınamadı" # Apply selected filter filter_map = { "Gaussian Blur": lambda: apply_gaussian_blur(frame), "Sharpen": lambda: apply_sharpening_filter(frame), "Edge Detection": lambda: apply_edge_detection(frame), "Invert": lambda: apply_invert_filter(frame), "Brightness": lambda: adjust_brightness_contrast(frame, alpha=intensity, beta=50), "Grayscale": lambda: apply_grayscale_filter(frame), "Sepia": lambda: apply_sepia_filter(frame), "Sonbahar": lambda: apply_fall_filter(frame), "Vintage": lambda: apply_vintage_filter(frame), "Pencil Sketch": lambda: apply_pencil_sketch(frame), "Cartoon": lambda: apply_cartoon_effect(frame), "Watercolor": lambda: apply_watercolor(frame) } return filter_map.get(filter_type, lambda: frame)() # Gradio interface with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 📸 Advanced Photo Filter Application Upload an image or use your webcam to apply various artistic filters! ### Instructions: 1. Select a filter from the dropdown menu 2. Upload an image or capture from webcam 3. Adjust intensity (for supported filters) 4. Click 'Apply Filter' to see the result """) with gr.Row(): with gr.Column(scale=1): # Filter selection and controls filter_type = gr.Dropdown( label="Select Filter", choices=[ "Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "Grayscale", "Sepia", "Sonbahar", "Vintage", "Pencil Sketch", "Cartoon", "Watercolor" ], value="Gaussian Blur" ) intensity = gr.Slider( label="Filter Intensity", minimum=0.1, maximum=2.0, value=1.0, step=0.1 ) apply_button = gr.Button("Apply Filter", variant="primary") with gr.Column(scale=2): # Image display area with gr.Row(): input_image = gr.Image(label="Upload Image", type="numpy") output_image = gr.Image(label="Filtered Result") # Event handler apply_button.click( fn=apply_filter, inputs=[filter_type, input_image, intensity], outputs=output_image ) gr.Markdown(""" ### 🎨 Available Filters: - **Basic Filters**: Gaussian Blur, Sharpen, Edge Detection, Invert - **Color Filters**: Brightness, Grayscale, Sepia, Sonbahar - **Artistic Filters**: Vintage, Pencil Sketch, Cartoon, Watercolor """) # Launch the interface demo.launch()