# Importing necessary libraries import tensorflow as tf from tensorflow.keras import layers, models, datasets import numpy as np # Load the MNIST dataset (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # Normalize pixel values to be between 0 and 1 train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255 # Convert labels to categorical one-hot encoding train_labels = tf.keras.utils.to_categorical(train_labels, 10) test_labels = tf.keras.utils.to_categorical(test_labels, 10) # Define the CNN model def create_cnn_model(input_shape, num_classes): model = models.Sequential() # Convolutional layers model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) # Flatten layer to transition from convolutional layers to fully connected layers model.add(layers.Flatten()) # Dense (fully connected) layers model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(num_classes, activation='softmax')) # Output layer with softmax activation for multiclass classification return model # Define input shape and number of classes input_shape = (28, 28, 1) # Input shape for MNIST images num_classes = 10 # Number of classes for digit classification (0-9) # Create an instance of the model model = create_cnn_model(input_shape, num_classes) # Print model summary model.summary() # Compile the model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Train the model model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels)) # Save the trained model to disk model.save("mnist_cnn_model.h5") print("Model saved to disk.") # Load the saved model loaded_model = models.load_model("mnist_cnn_model.h5") print("Model loaded from disk.") # Evaluate the loaded model test_loss, test_accuracy = loaded_model.evaluate(test_images, test_labels) print(f"Test Accuracy: {test_accuracy}")