import os import tensorflow as tf import gradio as gr import numpy as np from PIL import Image # Disable all GPUS os.environ["CUDA_VISIBLE_DEVICES"] = "-1" current_directory = os.path.abspath(os.path.dirname(__file__)) # Load your pre-trained model def load_model(): model = tf.keras.models.load_model(os.path.join(current_directory, "model.h5")) # Replace with your model's path return model model = load_model() # Define the labels (categories) labels = ['Water', 'Cloudy', 'Desert', 'Green Area'] # Function to preprocess the image and predict the class def classify_image(image): # Ensure the image is in PIL format if not isinstance(image, Image.Image): image = Image.fromarray(image) img = image.resize((128, 128)) # Resize the image img = np.array(img) / 255.0 # Normalize the image img = np.expand_dims(img, axis=0) # Add batch dimension prediction = model.predict(img) predicted_class = labels[np.argmax(prediction)] # Prepare output with probabilities return {labels[i]: float(prediction[0][i]) for i in range(len(labels))} # Define the Gradio interface image_input = gr.Image(type="pil") # Use "pil" as the type for PIL images label_output = gr.Label(num_top_classes=4) # Launch the interface gr.Interface(fn=classify_image, inputs=image_input, outputs=label_output, title="Satellite Image Classification", description="Classify satellite images into four types: Water, Cloudy, Desert, Green Area").launch()