{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.2.1\n" ] } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "print(pd.__version__)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "# loading emg data & time marker from test-1 folder\n", "emg_data_path = 'test-new/0-New_Task-recording-0.csv'\n", "time_marker_path = 'test-new/time_marker.csv'\n", "\n", "emg_data = pd.read_csv(emg_data_path, skiprows=[0,1,3,4])\n", "time_marker = pd.read_csv(time_marker_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### EMG data Processing" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
1718192021222324
Channels
0250813112601109912121028-1143-1249
160018651182754946811-1138-1130
3200382961-327240-462-75-445-66
4800-493-87-1505-375-872-558-722-211
6400-1565-666-2092-724-1142-809-769255
...........................
95198400-2717-2701-2697-2706-2692-2691-2680-2703
9519491000000000
9519651000000000
9519811000000000
9519971000000000
\n", "

59504 rows × 8 columns

\n", "
" ], "text/plain": [ " 17 18 19 20 21 22 23 24\n", "Channels \n", "0 2508 1311 2601 1099 1212 1028 -1143 -1249\n", "1600 1865 1182 754 94 68 11 -1138 -1130\n", "3200 382 961 -327 240 -462 -75 -445 -66\n", "4800 -493 -87 -1505 -375 -872 -558 -722 -211\n", "6400 -1565 -666 -2092 -724 -1142 -809 -769 255\n", "... ... ... ... ... ... ... ... ...\n", "95198400 -2717 -2701 -2697 -2706 -2692 -2691 -2680 -2703\n", "95194910 0 0 0 0 0 0 0 0\n", "95196510 0 0 0 0 0 0 0 0\n", "95198110 0 0 0 0 0 0 0 0\n", "95199710 0 0 0 0 0 0 0 0\n", "\n", "[59504 rows x 8 columns]" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Reset emg data index with Channels\n", "emg_data = emg_data.set_index('Channels')\n", "emg_data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Index: 59504 entries, 0 to 95199710\n", "Data columns (total 8 columns):\n", " # Column Non-Null Count Dtype\n", "--- ------ -------------- -----\n", " 0 17 59504 non-null int64\n", " 1 18 59504 non-null int64\n", " 2 19 59504 non-null int64\n", " 3 20 59504 non-null int64\n", " 4 21 59504 non-null int64\n", " 5 22 59504 non-null int64\n", " 6 23 59504 non-null int64\n", " 7 24 59504 non-null int64\n", "dtypes: int64(8)\n", "memory usage: 4.1 MB\n" ] } ], "source": [ "emg_data.info()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# Get signal data from difference of emg_data\n", "signal_left_lateral = emg_data['21'] - emg_data['3']\n", "signal_left_medial = emg_data['22'] - emg_data['2']\n", "\n", "signal_right_lateral = emg_data['16'] - emg_data['6']\n", "signal_right_medial = emg_data['17'] - emg_data['5']" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "# Get signal data from difference of emg_data\n", "signal_left_lateral = emg_data['17'] - emg_data['18']\n", "signal_left_medial = emg_data['19'] - emg_data['20']\n", "\n", "signal_right_lateral = emg_data['23'] - emg_data['24']\n", "signal_right_medial = emg_data['21'] - emg_data['22']" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean of RMS Signal 1: 414.735, Std Dev of RMS Signal 1: 702.679\n", "Mean of RMS Signal 2: 443.660, Std Dev of RMS Signal 2: 578.622\n", "Mean of RMS Signal 3: 440.785, Std Dev of RMS Signal 3: 622.244\n", "Mean of RMS Signal 4: 483.905, Std Dev of RMS Signal 4: 758.514\n" ] } ], "source": [ "# RMS caculation\n", "\n", "# Define the moving average window size\n", "N = 25\n", "\n", "# Function to calculate moving RMS\n", "def moving_rms(signal, window_size):\n", " rms = np.sqrt(pd.Series(signal).rolling(window=window_size).mean()**2)\n", " rms.index = signal.index # Ensure the index matches the original signal\n", " return rms\n", "\n", "# Calculate moving RMS for each channel\n", "signal_left_lateral_RMS = moving_rms(signal_left_lateral, N)\n", "signal_left_medial_RMS = moving_rms(signal_left_medial, N)\n", "signal_right_lateral_RMS = moving_rms(signal_right_lateral, N)\n", "signal_right_medial_RMS = moving_rms(signal_right_medial, N)\n", "\n", "# Calculate mean and standard deviation of the RMS signals\n", "mean_ch1_rms = np.mean(signal_left_lateral_RMS)\n", "std_ch1_rms = np.std(signal_left_lateral_RMS)\n", "\n", "mean_ch2_rms = np.mean(signal_left_medial_RMS)\n", "std_ch2_rms = np.std(signal_left_medial_RMS)\n", "\n", "mean_ch3_rms = np.mean(signal_right_lateral_RMS)\n", "std_ch3_rms = np.std(signal_right_lateral_RMS)\n", "\n", "mean_ch4_rms = np.mean(signal_right_medial_RMS)\n", "std_ch4_rms = np.std(signal_right_medial_RMS)\n", "\n", "# Print mean and standard deviation values\n", "print(f'Mean of RMS Signal 1: {mean_ch1_rms: .3f}, Std Dev of RMS Signal 1: {std_ch1_rms: .3f}')\n", "print(f'Mean of RMS Signal 2: {mean_ch2_rms: .3f}, Std Dev of RMS Signal 2: {std_ch2_rms: .3f}')\n", "print(f'Mean of RMS Signal 3: {mean_ch3_rms: .3f}, Std Dev of RMS Signal 3: {std_ch3_rms: .3f}')\n", "print(f'Mean of RMS Signal 4: {mean_ch4_rms: .3f}, Std Dev of RMS Signal 4: {std_ch4_rms: .3f}')" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Channels\n", "0 NaN\n", "1600 NaN\n", "3200 NaN\n", "4800 NaN\n", "6400 NaN\n", "8000 NaN\n", "9600 NaN\n", "11200 NaN\n", "12800 NaN\n", "14400 NaN\n", "16000 NaN\n", "17600 NaN\n", "19200 NaN\n", "20800 NaN\n", "22400 NaN\n", "24000 NaN\n", "25600 NaN\n", "27200 NaN\n", "28800 NaN\n", "30400 NaN\n", "32000 NaN\n", "33600 NaN\n", "35200 NaN\n", "36800 NaN\n", "38400 101.80\n", "40000 187.36\n", "41600 257.64\n", "43200 258.04\n", "44800 249.12\n", "46400 213.04\n", "dtype: float64" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "signal_left_lateral_RMS.head(30)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "131.65497112394493" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(signal_left_lateral_RMS.loc[:10000000])" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "101.73584628144596" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.std(signal_left_lateral_RMS.loc[:10000000])" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "90.46881927178374" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "signal_left_lateral_RMS.loc[:10000000].std()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Time Marker Processing" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_timedescriptiontag
078357902.0Coughstart
179670999.0Coughend
281227489.0Bitestart
382465323.0Biteend
484239727.0Swallowstart
585434346.0Swallowend
686628547.0Swallowstart
787951834.0Swallowend
889673825.0Swallowstart
991158663.0Swallowend
1092257779.0Coughstart
1193714668.0Coughend
\n", "
" ], "text/plain": [ " event_time description tag\n", "0 78357902.0 Cough start\n", "1 79670999.0 Cough end\n", "2 81227489.0 Bite start\n", "3 82465323.0 Bite end\n", "4 84239727.0 Swallow start\n", "5 85434346.0 Swallow end\n", "6 86628547.0 Swallow start\n", "7 87951834.0 Swallow end\n", "8 89673825.0 Swallow start\n", "9 91158663.0 Swallow end\n", "10 92257779.0 Cough start\n", "11 93714668.0 Cough end" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "time_marker = pd.read_csv(time_marker_path)\n", "time_marker = time_marker[['0-New_Task-recording_time(us)', 'description', 'tag']]\n", "time_marker = time_marker.rename(columns={'0-New_Task-recording_time(us)': 'event_time'})\n", "time_marker" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
event_timenametag
032030195.0bitestart
156294235.0biteend
260284534.0swallowstart
362478843.0swallowend
467892676.0swallowstart
569216432.0swallowend
671896644.0swallowstart
773034917.0swallowend
877098837.0coughstart
979341557.0coughend
1082717865.0coughstart
1183992269.0coughend
1286344529.0coughstart
1388152623.0coughend
\n", "
" ], "text/plain": [ " event_time name tag\n", "0 32030195.0 bite start\n", "1 56294235.0 bite end\n", "2 60284534.0 swallow start\n", "3 62478843.0 swallow end\n", "4 67892676.0 swallow start\n", "5 69216432.0 swallow end\n", "6 71896644.0 swallow start\n", "7 73034917.0 swallow end\n", "8 77098837.0 cough start\n", "9 79341557.0 cough end\n", "10 82717865.0 cough start\n", "11 83992269.0 cough end\n", "12 86344529.0 cough start\n", "13 88152623.0 cough end" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "time_marker = pd.read_csv(time_marker_path)\n", "time_marker = time_marker[['0-New_Task-recording_time(us)', 'name', 'tag']]\n", "time_marker = time_marker.rename(columns={'0-New_Task-recording_time(us)': 'event_time'})\n", "time_marker" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "# Select column value with odd/even index\n", "event_start_times = time_marker.loc[0::2]['event_time'].values.astype(int)\n", "event_end_times = time_marker.loc[1::2]['event_time'].values.astype(int)\n", "event_names = time_marker.loc[0::2]['description'].values" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# Select column value with odd/even index\n", "event_start_times = time_marker.loc[0::2]['event_time'].values.astype(int)\n", "event_end_times = time_marker.loc[1::2]['event_time'].values.astype(int)\n", "event_names = time_marker.loc[0::2]['name'].values" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "signal LL basic 10s std : 90.469\n", "signal RL basic 10s std : 64.398\n" ] } ], "source": [ "# Get signal basic 10s std\n", "signal_left_lateral_basics_10s_std = signal_left_lateral_RMS.loc[: 10000000].std()\n", "print(f\"signal LL basic 10s std : {signal_left_lateral_basics_10s_std: .3f}\")\n", "\n", "signal_right_lateral_basics_10s_std = signal_right_lateral_RMS.loc[: 10000000].std()\n", "print(f\"signal RL basic 10s std : {signal_right_lateral_basics_10s_std: .3f}\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "def emg_plot(event_index, event_plot_name, left_std_ratio, left_delta_t, right_std_ratio, right_delta_t):\n", " \"\"\"\n", " Plots a 2D quadrant chart for EMG signal analysis with colored squares indicating the quadrant.\n", "\n", " Parameters:\n", " std (float): Standard deviation value of the EMG signal.\n", " delta_t (float): Delta T value of the EMG signal.\n", " \"\"\"\n", " # Create a new figure\n", " fig, ax = plt.subplots(figsize=(8, 8))\n", "\n", " # Determine the quadrant and plot the colored square\n", " if left_std_ratio > 3 and left_delta_t > 0:\n", " # First quadrant\n", " ax.add_patch(plt.Rectangle((2, 2), 6, 6, color='blue', alpha=0.5))\n", " elif left_std_ratio <= 3 and left_delta_t > 0:\n", " # Second quadrant\n", " ax.add_patch(plt.Rectangle((-8, 2), 6, 6, color='blue', alpha=0.5))\n", " elif left_std_ratio <= 3 and left_delta_t <= 0:\n", " # Third quadrant\n", " ax.add_patch(plt.Rectangle((-8, -8), 6, 6, color='blue', alpha=0.5))\n", " elif left_std_ratio > 3 and left_delta_t <= 0:\n", " # Fourth quadrant\n", " ax.add_patch(plt.Rectangle((2, -8), 6, 6, color='blue', alpha=0.5))\n", " \n", " # Determine the quadrant and plot the colored square\n", " if right_std_ratio > 3 and right_delta_t > 0:\n", " # First quadrant\n", " ax.add_patch(plt.Rectangle((1.5, 1.5), 6, 6, color='green', alpha=0.5))\n", " elif right_std_ratio <= 3 and right_delta_t > 0:\n", " # Second quadrant\n", " ax.add_patch(plt.Rectangle((-8.5, 1.5), 6, 6, color='green', alpha=0.5))\n", " elif right_std_ratio <= 3 and right_delta_t <= 0:\n", " # Third quadrant\n", " ax.add_patch(plt.Rectangle((-8.5, -8.5), 6, 6, color='green', alpha=0.5))\n", " elif right_std_ratio > 3 and right_delta_t <= 0:\n", " # Fourth quadrant\n", " ax.add_patch(plt.Rectangle((1.5, -8.5), 6, 6, color='green', alpha=0.5))\n", "\n", " # Add horizontal and vertical lines to create quadrants\n", " plt.axhline(y=0, color='black', linestyle='--')\n", " plt.axvline(x=0, color='black', linestyle='--')\n", "\n", " # Add title and axis labels\n", " plt.title(f'Muscle Coordination Analysis - {event_index}:{event_plot_name}', fontsize=14)\n", " plt.xlabel('Std Ratio > 3', fontsize=12)\n", " plt.ylabel('Delta T > 0', fontsize=12)\n", "\n", " # Remove axis numbers and labels\n", " ax.set_xticks([])\n", " ax.set_yticks([])\n", " ax.set_xticklabels([])\n", " ax.set_yticklabels([])\n", " \n", " # Set plot legend with color\n", " plt.legend(['Left', 'Right'], loc='upper left', fontsize=10)\n", "\n", " # Set the limits of the plot\n", " plt.xlim(-10, 10)\n", " plt.ylim(-10, 10)\n", "\n", " # Display the plot\n", " plt.show()\n" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "78357902" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "event_start_times[0]" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "79670999" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "event_end_times[0]" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.int32" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(event_start_times[0])" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "pandas.core.series.Series" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(signal_left_lateral_RMS)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Channels\n", "78358400 369.00\n", "78360000 380.12\n", "78361600 285.88\n", "78363200 238.68\n", "78364800 215.96\n", " ... \n", "79664000 36.44\n", "79665600 34.52\n", "79667200 32.32\n", "79668800 29.92\n", "79670400 14.52\n", "Length: 821, dtype: float64" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mask = (signal_left_lateral_RMS.index >= event_start_times[0]) & (signal_left_lateral_RMS.index <= event_end_times[0])\n", "signal_left_lateral_RMS.iloc[mask]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "78357902", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3805\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3804\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3805\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcasted_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3806\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", "File \u001b[1;32mindex.pyx:167\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mindex.pyx:196\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2606\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2630\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 78357902", "\nThe above exception was the direct cause of the following exception:\n", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[76], line 6\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m series\u001b[38;5;241m.\u001b[39mindex[series\u001b[38;5;241m.\u001b[39mindex\u001b[38;5;241m.\u001b[39mget_loc(timestamp)]\n\u001b[0;32m 5\u001b[0m \u001b[38;5;66;03m# Then use:\u001b[39;00m\n\u001b[1;32m----> 6\u001b[0m start_idx \u001b[38;5;241m=\u001b[39m \u001b[43mget_nearest_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43msignal_left_lateral_RMS\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mevent_start_times\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m \n\u001b[0;32m 7\u001b[0m end_idx \u001b[38;5;241m=\u001b[39m get_nearest_index(signal_left_lateral_RMS, event_end_times[\u001b[38;5;241m0\u001b[39m])\n\u001b[0;32m 8\u001b[0m event_data \u001b[38;5;241m=\u001b[39m signal_left_lateral_RMS\u001b[38;5;241m.\u001b[39mloc[start_idx:end_idx]\n", "Cell \u001b[1;32mIn[76], line 3\u001b[0m, in \u001b[0;36mget_nearest_index\u001b[1;34m(series, timestamp)\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_nearest_index\u001b[39m(series, timestamp):\n\u001b[1;32m----> 3\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m series\u001b[38;5;241m.\u001b[39mindex[\u001b[43mseries\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimestamp\u001b[49m\u001b[43m)\u001b[49m]\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3807\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(casted_key, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[0;32m 3808\u001b[0m \u001b[38;5;28misinstance\u001b[39m(casted_key, abc\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[0;32m 3809\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m casted_key)\n\u001b[0;32m 3810\u001b[0m ):\n\u001b[0;32m 3811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidIndexError(key)\n\u001b[1;32m-> 3812\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[0;32m 3813\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 3814\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[0;32m 3815\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[0;32m 3816\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[0;32m 3817\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n", "\u001b[1;31mKeyError\u001b[0m: 78357902" ] } ], "source": [ "# Convert microsecond timestamps to array indices\n", "def get_nearest_index(series, timestamp):\n", " return series.index[series.index.get_loc(timestamp)]\n", "\n", "# Then use:\n", "start_idx = get_nearest_index(signal_left_lateral_RMS, event_start_times[0]) \n", "end_idx = get_nearest_index(signal_left_lateral_RMS, event_end_times[0])\n", "event_data = signal_left_lateral_RMS.loc[start_idx:end_idx]" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "78357902", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3805\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3804\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3805\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcasted_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3806\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", "File \u001b[1;32mindex.pyx:167\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mindex.pyx:196\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2606\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2630\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 78357902", "\nThe above exception was the direct cause of the following exception:\n", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[70], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m start_time \u001b[38;5;241m=\u001b[39m \u001b[43msignal_left_lateral_RMS\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mint\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mevent_start_times\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2\u001b[0m start_time\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3807\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(casted_key, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[0;32m 3808\u001b[0m \u001b[38;5;28misinstance\u001b[39m(casted_key, abc\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[0;32m 3809\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m casted_key)\n\u001b[0;32m 3810\u001b[0m ):\n\u001b[0;32m 3811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidIndexError(key)\n\u001b[1;32m-> 3812\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[0;32m 3813\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 3814\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[0;32m 3815\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[0;32m 3816\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[0;32m 3817\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n", "\u001b[1;31mKeyError\u001b[0m: 78357902" ] } ], "source": [ "start_time = signal_left_lateral_RMS.index.get_loc(int(event_start_times[0]))\n", "start_time" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "ename": "KeyError", "evalue": "78357902", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3805\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3804\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 3805\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcasted_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 3806\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", "File \u001b[1;32mindex.pyx:167\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mindex.pyx:196\u001b[0m, in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2606\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "File \u001b[1;32mpandas\\\\_libs\\\\hashtable_class_helper.pxi:2630\u001b[0m, in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 78357902", "\nThe above exception was the direct cause of the following exception:\n", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[72], line 5\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Use nearest method to find the closest index values\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;66;03m# start_time = signal_left_lateral_RMS.index.get_loc(event_start_times[0], method='nearest')\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;66;03m# end_time = signal_left_lateral_RMS.index.get_loc(event_end_times[0], method='nearest')\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m \u001b[43msignal_left_lateral_RMS\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloc\u001b[49m\u001b[43m[\u001b[49m\u001b[43mevent_start_times\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mevent_end_times\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexing.py:1191\u001b[0m, in \u001b[0;36m_LocationIndexer.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1189\u001b[0m maybe_callable \u001b[38;5;241m=\u001b[39m com\u001b[38;5;241m.\u001b[39mapply_if_callable(key, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobj)\n\u001b[0;32m 1190\u001b[0m maybe_callable \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_deprecated_callable_usage(key, maybe_callable)\n\u001b[1;32m-> 1191\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmaybe_callable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexing.py:1411\u001b[0m, in \u001b[0;36m_LocIndexer._getitem_axis\u001b[1;34m(self, key, axis)\u001b[0m\n\u001b[0;32m 1409\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(key, \u001b[38;5;28mslice\u001b[39m):\n\u001b[0;32m 1410\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_key(key, axis)\n\u001b[1;32m-> 1411\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_slice_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1412\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m com\u001b[38;5;241m.\u001b[39mis_bool_indexer(key):\n\u001b[0;32m 1413\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_getbool_axis(key, axis\u001b[38;5;241m=\u001b[39maxis)\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexing.py:1443\u001b[0m, in \u001b[0;36m_LocIndexer._get_slice_axis\u001b[1;34m(self, slice_obj, axis)\u001b[0m\n\u001b[0;32m 1440\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mcopy(deep\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 1442\u001b[0m labels \u001b[38;5;241m=\u001b[39m obj\u001b[38;5;241m.\u001b[39m_get_axis(axis)\n\u001b[1;32m-> 1443\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[43mlabels\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mslice_indexer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mslice_obj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mslice_obj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mslice_obj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1445\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(indexer, \u001b[38;5;28mslice\u001b[39m):\n\u001b[0;32m 1446\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mobj\u001b[38;5;241m.\u001b[39m_slice(indexer, axis\u001b[38;5;241m=\u001b[39maxis)\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:6662\u001b[0m, in \u001b[0;36mIndex.slice_indexer\u001b[1;34m(self, start, end, step)\u001b[0m\n\u001b[0;32m 6618\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mslice_indexer\u001b[39m(\n\u001b[0;32m 6619\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m 6620\u001b[0m start: Hashable \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m 6621\u001b[0m end: Hashable \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m 6622\u001b[0m step: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m 6623\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mslice\u001b[39m:\n\u001b[0;32m 6624\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 6625\u001b[0m \u001b[38;5;124;03m Compute the slice indexer for input labels and step.\u001b[39;00m\n\u001b[0;32m 6626\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 6660\u001b[0m \u001b[38;5;124;03m slice(1, 3, None)\u001b[39;00m\n\u001b[0;32m 6661\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 6662\u001b[0m start_slice, end_slice \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mslice_locs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstep\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 6664\u001b[0m \u001b[38;5;66;03m# return a slice\u001b[39;00m\n\u001b[0;32m 6665\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_scalar(start_slice):\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:6879\u001b[0m, in \u001b[0;36mIndex.slice_locs\u001b[1;34m(self, start, end, step)\u001b[0m\n\u001b[0;32m 6877\u001b[0m start_slice \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 6878\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m start \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 6879\u001b[0m start_slice \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_slice_bound\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mleft\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 6880\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m start_slice \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 6881\u001b[0m start_slice \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:6804\u001b[0m, in \u001b[0;36mIndex.get_slice_bound\u001b[1;34m(self, label, side)\u001b[0m\n\u001b[0;32m 6801\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_searchsorted_monotonic(label, side)\n\u001b[0;32m 6802\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m:\n\u001b[0;32m 6803\u001b[0m \u001b[38;5;66;03m# raise the original KeyError\u001b[39;00m\n\u001b[1;32m-> 6804\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m err\n\u001b[0;32m 6806\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(slc, np\u001b[38;5;241m.\u001b[39mndarray):\n\u001b[0;32m 6807\u001b[0m \u001b[38;5;66;03m# get_loc may return a boolean array, which\u001b[39;00m\n\u001b[0;32m 6808\u001b[0m \u001b[38;5;66;03m# is OK as long as they are representable by a slice.\u001b[39;00m\n\u001b[0;32m 6809\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m is_bool_dtype(slc\u001b[38;5;241m.\u001b[39mdtype)\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:6798\u001b[0m, in \u001b[0;36mIndex.get_slice_bound\u001b[1;34m(self, label, side)\u001b[0m\n\u001b[0;32m 6796\u001b[0m \u001b[38;5;66;03m# we need to look up the label\u001b[39;00m\n\u001b[0;32m 6797\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m-> 6798\u001b[0m slc \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_loc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlabel\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 6799\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[0;32m 6800\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", "File \u001b[1;32mc:\\ProgramData\\anaconda3\\envs\\snomed\\lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001b[0m, in \u001b[0;36mIndex.get_loc\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 3807\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(casted_key, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m (\n\u001b[0;32m 3808\u001b[0m \u001b[38;5;28misinstance\u001b[39m(casted_key, abc\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[0;32m 3809\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mslice\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m casted_key)\n\u001b[0;32m 3810\u001b[0m ):\n\u001b[0;32m 3811\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidIndexError(key)\n\u001b[1;32m-> 3812\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(key) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01merr\u001b[39;00m\n\u001b[0;32m 3813\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 3814\u001b[0m \u001b[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001b[39;00m\n\u001b[0;32m 3815\u001b[0m \u001b[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001b[39;00m\n\u001b[0;32m 3816\u001b[0m \u001b[38;5;66;03m# the TypeError.\u001b[39;00m\n\u001b[0;32m 3817\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_check_indexing_error(key)\n", "\u001b[1;31mKeyError\u001b[0m: 78357902" ] } ], "source": [ "# Use nearest method to find the closest index values\n", "# start_time = signal_left_lateral_RMS.index.get_loc(event_start_times[0], method='nearest')\n", "# end_time = signal_left_lateral_RMS.index.get_loc(event_end_times[0], method='nearest')\n", "\n", "signal_left_lateral_RMS.loc[event_start_times[0] : event_end_times[0]]" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Event 1: Cough\n", "Start time: 78.358 sec, End time: 79.671 sec\n", "left std ratio: 1.008, right std ratio: 2.445\n", "LM_max_index: 79.310, LL_max_index: 78.360, left delta t: 0.950\n", "RM_max_index: 78.814, RL_max_index: 79.126, right delta t: -0.312\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABP0ElEQVR4nO3deXgUVd7+/7uT7izdCRFoEBBIcEMEVDAsIpLEDQyuyCKoQ0BHHXFDQJ1hFHj8gQ4jjiuOjwugAgIqiKCgo0QcRQ0KuIC4gcgiEIQA6ew5vz/4ph9iFpJUJZWk36/rymVZfbrr051Oc/c5Vee4jDFGAAAAQA2FOV0AAAAAGjYCJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiVQgfT0dLlcLk2ePNnpUhqEil6vhIQEJSQkOFJTRdLS0uRyubR161anS6m3Zs+eLZfLpdmzZ9f6sfhbq9/4/aAqCJSw3datW+VyueRyuXTCCSeoqKio3HZff/11sN1pp51Wx1XWH4FAQI8//rhSUlLUokULeTweNWvWTH379tXDDz+svXv3Ol1ig1OXYchuH3zwQfDvYtmyZU6XE5KefPJJjRo1SmeccYbcbrdcLpfS09Nr/HjGGL3xxhsaNGiQ2rZtq8jISMXGxurMM8/U2LFjtXHjRvuKBxzidroANF5ut1s7d+7UypUrlZqaWub2F154QW63W4WFhQ5UVz9s2LBBV1xxhX755RfFx8fr8ssv1/HHH6+DBw/q008/1V//+lc99NBD2rlzp3w+n9Pl1sj777/vdAllPPTQQ7rvvvt0wgknOF1KGS+++KIkyeVy6YUXXtCll17qcEW1r2fPntq0aZP8fr/TpUiS7rjjDklS69at1aJFC/322281fqzff/9dQ4YM0QcffKDjjjtOF110kU488UTl5+fr22+/1cyZM/XEE0/o/fffV3Jysk3PAKh7BErUmj59+mjDhg168cUXywTK/Px8zZ07V6mpqVq6dKlDFTpr+/btuvjii5WZmakZM2bozjvvVHh4eKk269at02233aaCggKHqrTupJNOcrqEMlq3bq3WrVs7XUYZBw4c0BtvvKGePXsqKipKy5Yt0+7du3X88cc7XVqt8nq99WqUYtmyZTr77LPVqlUr3XLLLXr22Wdr9DiFhYW66qqrtHr1al133XV6+umn1aRJk1Jtdu3apYkTJyorK8uO0gHHMOSNWhMdHa1hw4bprbfeUmZmZqnbli5dqszMTI0aNarc+1Z2jtvkyZPLHYJ6/fXXlZSUpJYtWyoqKkrt2rXTgAEDtGTJkjKP8dVXX+m6664LDj+1bt1aAwYM0FtvvVWl57Znzx6NHTtWJ598siIjI+X3+3X11Vfrm2++qdL9JWnixInas2eP/va3v+nuu+8uEyYlqVu3bvrwww/L/CO0bNkypaSkKC4uTtHR0TrrrLP02GOPVXh6QVXbl5yukJaWpu+++06DBg2S3+8v9bvIycnRfffdp3bt2ikqKkpdunTRc889V+HzLO8cyqN/hwsXLlT37t0VHR2t1q1b64477lBOTk6p9vn5+XryySfVv39/tWvXTpGRkWrZsqUGDRqkdevWlWqblpYWfF+NGjUqOHzscrlKtano/TVnzhz17t1bMTExiomJUe/evTVnzpwy7Y4+r+zLL79U//79FRsbq7i4OF111VU1Oj9z3rx5ysnJ0fXXX68//elPKiws1EsvvVRu26Ofw8yZM9WpUydFRUUpPj5eU6ZMUXFxcan2WVlZ+sc//qGkpCS1adNGERERatOmjf70pz/pp59+OmZthw4dUmxsrDp37lzu7UVFRWrTpo1atGih/Px8SVJubq5mzJihM888U3FxcYqJidFJJ52k4cOH6+uvvw7et6Jz9H744QeNGjVKHTp0UFRUlPx+v7p3765x48Yds14rBg4cqFatWll+nJdfflmrV69Wv379NGfOnDJ/x9KRLzcvvviiBgwYUGr/t99+q2HDhqlly5aKjIxUhw4dNHbsWP3+++9lHsPlclXYu1nROcxbt27VsGHD1KxZM8XExCgpKUmrV6+u8PO1hF3vdTQ+BErUqtGjRwd7I4/24osvqmXLlrYN5z3zzDMaPHiwfvjhB1111VW6++67deGFF+rXX38tEygXL16snj17auHCherVq5fGjRungQMHaseOHXrhhReOeayffvpJZ599th5//HGdfPLJuv3225WamqoVK1aod+/e+uyzz475GIFAQK+++qqio6M1fvz4Stu63W6Fhf3fn+rjjz+uyy67TF999ZVGjBihMWPGKCcnR2PHjtXQoUNljCl1/+q2l6Qff/xRvXv31u7duzVy5EilpaUpIiJCxcXFuvzyy/WPf/xDTZs21Z133qnevXtr7NixmjFjxjGf9x89/fTTGj16tDp16qS//OUvatq0qZ588kndeOONpdr9/vvvuuuuu5SXl6fU1FSNHTtWycnJevvtt9WnTx9lZGQE21555ZW64oorJElXXHGFJk2aFPw5lrFjxyotLU3bt2/XDTfcoBtvvFE7duxQWlqa7r777nLvs3btWp133nlyu926+eablZiYqCVLlujCCy9Ubm5utV6PF154QR6PR9dcc42GDBmi6OjoY74nJ0yYoEmTJql37966+eabJR0J7Pfff3+pdps2bdIDDzyg6OhoXXXVVbrrrruUmJioefPmqWfPnvrll18qPU5sbKyGDx+ujRs36pNPPilz+/Lly7Vr1y6NHDlSERERkqSRI0cG39+jRo3SmDFj1LNnT61atUpffPFFpcfbuXOnevbsqblz5+qss87SXXfdpWuuuUYtWrTQk08+Wel961pJCPtjIC753f39738v9TdcnsjIyOD2J598ol69eumNN97QBRdcoLvvvlsJCQl67LHH1Lt3b+3bt89SvTt27FCfPn20cOFCnXPOObrjjjvk9/t18cUXV/r5Zed7HY2QAWy2ZcsWI8n079/fGGNM586dzRlnnBG8ffv27SY8PNyMGzfOGGOMJNOxY8dSjzFy5EgjyWzZsqXM40+aNMlIMqtWrQru6969u4mIiDB79uwp0z4zMzO4vXv3bhMTE2N8Pp/58ssvy7T99ddfg9urVq0yksykSZNKtenTp49xu93m3XffLbV/8+bNJjY21nTt2rXM4/5Renq6kWT69u17zLZH++mnn4zb7TYtW7Y027ZtC+7Py8szSUlJRpJ5+eWXa9y+5Hcnydx///1ljj9r1iwjyQwYMMAUFhYG93/11VcmIiKi3NcrPj7exMfHl9pX8juMi4sz3333XXB/IBAwp556qnG5XGbHjh3B/bm5uWb79u1l6vnmm29MTEyMufDCC8utc9asWWXuY0z576/Vq1cbSaZTp07mwIEDwf0HDhwwp512mpFkPvroo+D+kveHJPPqq6+Wevzrr7/eSDLz588v9/jlWbdunZFkLr/88uC+4cOHG0nmv//9b4XPoUOHDmbnzp3B/Xv37jXHHXeciY2NNXl5eaWex759+8o8zgcffGDCwsLMjTfeWGp/ea9hRkaGkWRGjRpV5nEuv/xyI8ls2rQpeDyXy2USExNLvVeMMaawsNDs378/+P/l/a098cQTRpJ5/PHHyxxr7969ZfbVlptvvrnM580flbyfj66/oKDAeDwe43a7TU5OTpWPV1RUZE455RQjyaxYsaLUbX/961+NJHPDDTeU2i/JJCUllft45f39XXfddUaS+ec//1lqf8nv/I/P1+73OhoneihR60aNGqWvvvoq2CMxe/ZsFRUVafTo0bYex+PxyOPxlNnfvHnz4PacOXN0+PBhjRs3Tt26dSvTtm3btpUeY926dfrkk080cuRIXXTRRaVuO/XUU/XnP/9ZX3/99TGHvktO8j/W8f5o7ty5Kiws1Lhx49SuXbvg/oiICD388MOSVOrK5uq2L9GqVSv9/e9/L7O/ZPh16tSppYbou3btquuvv75az0WS7rzzTnXs2DH4/9HR0Ro+fLiMMaV6sCIjI8u9gKZz585KSUnR6tWrLZ9nWvI6TJ48WXFxccH9cXFxwd7N8l6rfv36adiwYaX2lby3j+45PZaS3qyjX8c//elPpW4rz/3331/qfFC/368rrrhChw4d0ubNm0s9j2bNmpW5f0pKijp37qz//Oc/x6wxMTFR3bt318KFC3Xo0KHg/t9++01vv/22+vbtGzwX0uVyyRijyMjIMqdzhIeH67jjjjvm8aQj74k/qi8X75S47bbbtGnTJt12223Bffv27VNBQYH8fr+ioqKq/Fgff/yxfvjhB11yySXq379/qdsmTpyo5s2ba968ecHTCqorLy9PixYt0vHHHx+8+KjEyJEjKz2X1a73OhonAiVq3fXXXy+PxxO8enX27Nnq1auXTj/9dNuOMXToUGVnZ6tLly4aP368li1bpgMHDpRp9/nnn0uSLr744hod59NPP5V05B/QyZMnl/n57rvvJCn4X7uVnC9Y3vlSvXv3VnR0tNavX1/j9iXOPPPM4LDl0TZs2CCv16vu3buXue28886r2pM4SnmPUxKy//j7W79+vUaMGKH27dsrIiIieF7kW2+9pfz8/DLn6VZXZa9Vyb7yXqvqPIeK5OXlae7cuTruuON02WWXBfdfdNFFat26tRYuXKjDhw+Xe9/qHD89PV1XXnmlWrduLY/HE3wNv/76a+3cubNKtd58883Kzs7W/Pnzg/tmz56twsLCUqcqNGnSRAMGDNDHH3+s7t27a9q0afroo4+qHIQuvfRSeb1ejRkzRkOHDtWLL76o77//vkr3lY78rv7491lb00j5/X6ddtpptgTdyt6HPp9PiYmJysnJqdZrcbTNmzcrLy9PiYmJZf7GXS6XzjnnnArva8d7HY0XV3mj1rVs2VKpqamaP3++Lr/8cv3444/HPG+wuu655x41b95c//73v/Xoo49qxowZcrvdSk1N1WOPPaYOHTpI+r8PvZpOF1NyQvzy5cu1fPnyCttlZ2dX+jglJ/zv2LGjWsc/ePCgJFV41W/Lli1LPWZ125eoqH1WVlapns6q3KcyR/cElnC7j3wsHX3B0CeffKLzzz9f0pEvA6eccopiYmLkcrm0ZMkSbdiwQXl5edU+/tEOHjyosLAwtWjRosxtxx9/vMLCwsq9Ereqz6Eyixcv1v79+/XnP/+51Ll04eHhuvbaa/XII49owYIFuuGGG2p8/EWLFmnYsGGKiYlR//79lZCQIK/XG5yv81jnUJYYMWKExo0bp+eff1433XSTpCPnRMfFxWnIkCGl2r722muaNm2a5s+fr4kTJ0o6ci7m6NGjNW3aNHm93gqP06FDB61Zs0ZTpkzRO++8o0WLFkmSOnbsqAcffLDMsf5o/fr1mjJlSql9SUlJSktLq9LztKp58+byeDzat2+f8vLySv1eK3Osv9mSz46aXhVe8vjlvc8rO65kz3sdjRc9lKgTo0eP1v79+3XDDTcEhzUrU3ICe3lzVJb3QepyuXTjjTdq7dq12rt3rxYvXqxBgwZp6dKlGjhwYPDDrmSYrbpBrkTJVZpPPvmkjDEV/owcObLSx+nRo4ciIiK0du3a4Ad8dY6/e/fucm/fs2dPqStJq9u+xNFXRB8tLi5Oe/bsKfe2io5hh6lTpyovL0/vv/++li5dqhkzZmjKlCmaPHmyLVfjSkdeq+Li4nInkt+zZ4+Ki4vLfa3sUDKk/dxzz5W6Kt3lcumRRx4p1aamJk+erKioKH3xxRdatGiR/vnPfwZfw+oMycbExGjEiBHKyMjQV199pfT0dP3www+69tprywREn8+nqVOn6ueff9bPP/+sF154Qaeddpoef/xxjR079pjHOuOMM/T666/r999/15o1a/TAAw9o9+7dGjZsmD7++ONK75uWllbm79LK5OTV5Xa71bNnTxUUFGj16tVVvt+x/mZL9h/9XnS5XBXO5/vHz8uS+1W0YEJt/h2jcSNQok6kpqaqVatW2rFjh66++upj/sPctGlTSeUHvz9OE/NHzZs315VXXqkFCxbo/PPP16ZNm/Tjjz9KOjKBsiS9++67NXka6tWrlyRpzZo1Nbp/Ca/Xq2uuuUY5OTnHvDq6sLAwOAVMyXmf5f3D+PnnnysnJ0dnnXVWcF912x/LmWeeqUAgoC+//LLMbR999FGVH6e6fvrpJzVr1kznnntuqf0V1VJyzl51ek0qe60+/PBDSarWa1VVW7du1fvvv6/jjz9eN9xwQ7k/7du315o1a7Rp06YaH+enn35Sp06ddMopp5Tav3PnzipNG3S0kqvJn3/++WDQ/eOV+X/UoUMHjR49Wh9++KFiYmKqNf+sx+NR7969NWXKFD3xxBMyxjSIVYRKepSnTZtW7mwKRyvpYa/sfRgIBLR27VpFR0eXOve4adOm5X5Wbt26tcxQdMeOHRUZGakvvviizOkHxpjgaT1AdREoUSfcbreWLl2qxYsXa+rUqcdsn5iYKKnsRRCvvfZa8B/3o61cubLMN/SCgoLgEHXJif0jR45UTEyMZsyYUe75cMfquezZs6d69eql+fPna8GCBWVuLy4uLre+8kydOlUtWrTQ1KlT9cQTT5SZN1A6Ml9mcnJysBdzxIgRcrvdevTRR0ud81ZQUKD77rtPkkoN6VW3/bGUXDAyceLEUmHt66+/1ssvv1zlx6mu+Ph47d+/X99++21wX1FRkcaPH19uT0vJxSfbt2+v8jFKepWnTJlSqtf44MGDwaHTY/U818SsWbNkjNEtt9yi559/vtyfknkXrfRSxsfH68cffyzVA5Wbm6u//OUv1V6tqnv37jr77LP1yiuv6PXXX9fZZ59d5iK3vXv3Bs9ZPtr+/fuVl5dX7sU2R8vIyCi3N7yk/mPdvy5lZmbqu+++K3Me7/XXX6/zzjtP6enpGjVqVKkLmUrs3r1bf/7zn7VixQpJ0rnnnquTTjpJ77zzTpkLpR566CFlZmZq+PDhpc5/TExM1NatW0uF0Pz8/HKnuoqMjNTgwYP122+/6Yknnih120svvWTpSwtCG+dQos706NFDPXr0qFLbK6+8Uh06dNDs2bP166+/qlu3btq0aZM++OADpaam6u233y7VftiwYfJ6verbt6/i4+NVUFCg9957Txs3btSwYcPUvn17SUfOGXzppZd0zTXXqGfPnrr88svVsWNHZWZm6rPPPlNCQkK5E6Efbf78+UpJSdE111yjxx57TGeffbaioqK0bds2rVmzRnv37q3SnGxt27bVu+++qyuvvFJ33nmn/vWvf+mCCy4ILr34+eefKyMjQ02aNAlevX7SSSfpH//4h8aNG6czzjhDQ4cOlc/n07Jly/Tdd9/piiuu0HXXXRc8RnXbH8vIkSM1b948rVixQt26ddMll1yi33//XfPnz9fFF19ca71Gt99+u95991317dtXQ4cOVVRUlNLT07Vjxw4lJyeX6c0555xzFB0drccee0wHDx4Mni9WEqLL069fP91+++168skn1aVLF1199dXBNZh//fVX3XHHHerXr5+tz6u4uDi47nhlwf7aa6/VhAkT9PLLL+uhhx4qdzaDY7n99tt1++23q1u3bho8eLAKCwv13nvvyRijM888Uxs2bKjW4918883BcyjL653csWOHevXqpc6dO6t79+464YQTtG/fPr355psqKCjQPffcU+njz507VzNnzlRycrJOPvlkNWnSRBs3btTbb78tv99v+ywRR3v44YeDF9aVjEY8/PDDwS+4N954o/r27Rts/9RTT2nKlCmaNGlSqbko3W63lixZoiFDhmjOnDlaunSpLr74YnXo0EH5+fnauHGj0tPTVVBQEPw7DAsL0+zZs9W/f3+lpqZqyJAhio+P12effaYPPvhAJ510UnCGhhJjx47Vu+++q4EDB2r48OHyer167733dNxxx5W7ItRDDz2k//znP5owYYJWrVqls846S5s3b9ayZcs0YMAArVix4pjzZgJl1PE0RQgBf5yH8lhUzjyUxhjz888/myuuuMLExsYan89nLrjgApORkVHuPJQzZ840l19+uYmPjzdRUVGmefPmplevXubZZ581BQUFZR573bp1ZujQoeb44483Ho/HtG7d2lxyySVm2bJlwTYVzUNpjDG///67+fvf/266dOlioqOjTUxMjDnllFPMiBEjzBtvvFGl510iOzvbPPbYYyYpKcn4/X7jdrvNcccdZ8455xzz//1//1+peTRLvPnmmyYpKcnExsaayMhI07VrVzNjxoxyn2t12pf87kaOHFlpvffcc4854YQTTGRkpDn99NPNs88+W+HrVdk8lOXN7VfRHJKvvfaa6d69u/F6vcbv95uhQ4ean376qcI5S5cvX2569OhhoqOjg3PolahsntMXX3zR9OjRw3i9XuP1ek2PHj3Miy++WKZdZe+PqryOxhizYsUKI8lccMEFlbYzxpirr77aSDKvv/76MZ9Dea9vcXGx+fe//206d+5soqKiTKtWrcwNN9xgdu/eHZyT9GjHmsvz0KFDxuPxGK/Xa7Kyssrcvn//fjN58mTTr18/07p1axMREWHatGljBgwYYFauXFmqbXmv5aeffmpuvvlm06VLF3PccceZ6Ohoc8opp5g77rij1JyqtaHk9ajo54+vSXnzUB6tuLjYvPbaa+bKK680bdq0MREREcbr9ZouXbqYO+64w2zcuLHMfb766iszePBg4/f7jcfjMfHx8eaOO+6ocA7OBQsWmK5du5qIiAjTqlUrc/vtt5tDhw6V+/dnzJHP1yFDhpi4uDjj9XrNeeedZz788ENz2223GUlm3bp1wbZ2vNfR+LmMOcaJHQAA/MHnn3+uXr16adSoUcEpwdDw9e3bV2vWrFFWVpZiYmKcLgcNCH3aAIBqK7n6/JZbbnG4EtTErl27yuybO3euPv74Y1144YWESVQbPZQAgCrZtm2b5s2bp2+//VavvPKKBgwYoHfeecfpslADzZs3V7du3XT66acrPDxc69evV3p6umJjY/Xxxx+ra9euTpeIBoZACQCokvT0dKWkpCgmJkbnn3++nn32WdvmAUXdmjhxot566y1t27ZN2dnZatGihVJSUnT//fdXuvwiUBECJQAAACzhHEoAAABY4tg8lMXFxdq5c6diY2MrXOYNAAAAzjHG6NChQ2rTpk2l85M6Fih37typdu3aOXV4AAAAVNGvv/6qtm3bVni7Y4EyNjZW0pECj7WuMwDUd9nZ2WrTpo2kI1+YfT6fwxUBgHUHDx5Uu3btgrmtIo4FypJh7iZNmhAoATR44eHhwe0mTZoQKAE0Ksc6PZGLcgAAAGAJgRIAAACWECgBAABgiWPnUFZFcXGx8vPznS6jUfB4PKXO8QIAALBLvQ2U+fn52rJli4qLi50updE47rjj1KpVK+b9BAAAtqqXgdIYo127dik8PFzt2rWrdCJNHJsxRoFAQHv27JEktW7d2uGKgMYnPDxcqampwW0ACCX1MlAWFhYqEAioTZs28nq9TpfTKERHR0uS9uzZo5YtW/IPHmCzqKgoLV++3OkyAMAR9bLrr6ioSJIUERHhcCWNS0k4LygocLgSAADQmNTLQFmCc/3sxesJAABqQ70OlADQUGRnZ8vn88nn8yk7O9vpcgCgTtXLcygrkpUlBQJ1dzyvV4qLq7vjAWjYAnX5AQUA9UiDCZRZWdKDD0qZmXV3TL9fuv/+ugmVxhjdfPPNeu2117R//36tW7dOZ511Vu0fGAAAwKIGEygDgSNhMjr6SM9hXR0vEKh6oExLS9OBAwe0ZMmSah9vxYoVmj17ttLT03XiiSfK7/fL5XJp8eLFuvLKK6v9eAAAAHWlwQTKEl6vFBtbN8fKyamb40jSTz/9pNatW6tPnz51d1AAAAAbcFFOHdm4caNSU1MVExOj448/Xtdff70y/9/4fVpamm6//XZt27ZNLpdLCQkJSkhIkCRdddVVwX0AAAD1EYGyDuzatUtJSUk666yztHbtWq1YsUK7d+/W0KFDJUmPP/64/ud//kdt27bVrl27lJGRoYyMDEnSrFmzgvsAAADqowY35N0QPfPMM+revbumTZsW3Pfiiy+qXbt2+v7773XqqacqNjZW4eHhatWqVan7lqy/DaB+CwsLU1JSUnAbAEIJgbIOfPHFF1q1apViYmLK3PbTTz/p1FNPdaAqAHaKjo5Wenq602UAgCMIlHWguLhYl112mf7xj3+Uua1169YOVAQAAGAfAmUd6N69u15//XUlJCTI7a76S+7xeILrmgMAANRXDS5Q1tVCFDU9TlZWltavX19q380336znnntOw4cP14QJE+T3+/Xjjz/q1Vdf1XPPPafw8PByHyshIUHvv/++zj33XEVGRqpp06Y1KwpArcvOzg7OxrB161b5fD5nCwKAOtRgAqXXe2TlmszMupsf0u+v/iTq6enp6tatW6l9I0eO1Mcff6x7771X/fv3V15enuLj4zVgwIBKT96fMWOG7r77bj333HM64YQTtHXr1ho8CwB1JbMul/ICgHrEZYwxThz44MGDiouLU1ZWlpo0aVLqttzcXG3ZskUdOnRQVFRUcD9reVtT0esKwLrs7OzghXeHDx+mhxJAo1BZXjtag+mhlI6Eu8YU8AAAABoDJksDAACAJQRKAAAAWEKgBAAAgCUN6hxKAKivwsLClJiYGNwGgFBCoAQAG0RHRysjI8PpMgDAEXyNBgAAgCUESgAAAFjSoIa8s3KzFCiou5nNvR6v4qKY+BLAsQUCAZ1++umSpI0bN8pb3WW2AKABazCBMis3Sw+uflCZgbpb2szv9ev+fvfbGipdLpcWL16sK6+8skrt09PTlZKSov379+u4446zrQ4A9jLG6JdffgluA0AoaTCBMlAQUGYgU9HuaHk9tf/Nv+R4gYJAlQNlWlqa5syZI0kKDw9XmzZtNHDgQE2bNk1NmzaVJO3atSu4bZfJkydryZIlWr9+va2PCwAAUBUNJlCW8Hq8io2MrZNj5RTmVPs+AwYM0KxZs1RYWKiNGzdq9OjROnDggObPny9JatWqld1lAgAAOIqLcmwWGRmpVq1aqW3btrr44os1bNgwvfvuu8HbXS6XlixZEvz/Tz75RGeddZaioqKUmJioJUuWyOVylelt/OKLL5SYmCiv16s+ffpo8+bNkqTZs2drypQp2rBhg1wul1wul2bPnl0HzxQAAOAIAmUt+vnnn7VixQp5PJ5ybz906JAuu+wyde3aVV9++aUefPBB3XvvveW2nThxombMmKG1a9fK7XZr9OjRkqRhw4Zp3Lhx6ty5s3bt2qVdu3Zp2LBhtfacAAAA/qjBDXnXd8uWLVNMTIyKioqUm5srSXr00UfLbTt37ly5XC4999xzioqK0umnn64dO3boz3/+c5m2U6dOVVJSkiTpvvvu08CBA5Wbm6vo6GjFxMTI7XYznA4AABxBoLRZSkqKnnnmGQUCAT3//PP6/vvvdfvtt5fbdvPmzTrjjDMUFRUV3NezZ89y255xxhnB7datW0uS9uzZo/bt29tYPYCacrlcwWmDXC6Xw9UAQN1iyNtmPp9PJ598ss444ww98cQTysvL05QpU8pta4wp8w9PRdONHD1sXnKf4uJim6oGYJXX69W3336rb7/9ljkoAYQcAmUtmzRpkh555BHt3LmzzG2nnXaavvrqK+Xl5QX3rV27ttrHiIiIUFFRkaU6AQAAaqrBBcpAQUCH8g7V+o9dK/IkJyerc+fOmjZtWpnbRowYoeLiYt10003atGmTVq5cqUceeURS9YbMEhIStGXLFq1fv16ZmZmlAioAAEBtazDnUHo9Xvm9fmUGMms0P2RN+L1+WyZRv/vuuzVq1KgyV3A3adJEb731lv7yl7/orLPOUteuXfXAAw9oxIgRpc6rPJarr75ab7zxhlJSUnTgwAHNmjVLaWlplusGUHWBQEA9evSQJGVkZDDsDSCkuIxDa4QdPHhQcXFxysrKUpMmTUrdlpubqy1btqhDhw6lglUorOU9d+5cjRo1SllZWYqOjrb1sSt6XQFYl52drZiYGEnS4cOH5fP5HK4IAKyrLK8drcH0UEpSXFRcnQe82vbSSy/pxBNP1AknnKANGzbo3nvv1dChQ20PkwAAALWlQQXKxui3337TAw88oN9++02tW7fWkCFDNHXqVKfLAgAAqDICpcPuuece3XPPPU6XAQAAUGMN7ipvAAAA1C/1OlA6dL1Qo8VE6AAAoDbUyyFvj8cjl8ulvXv3qkWLFixjZpExRvn5+dq7d6/CwsIUERHhdElAo+NyuRQfHx/cBoBQUi8DZXh4uNq2bavt27dr69atTpfTaHi9XrVv315hYfW6YxpokLxeL59XAEJWvQyUkhQTE6NTTjlFBQUFTpfSKISHh8vtdtNzAgAAbFdvA6V0JASFh4c7XQYAAAAqwdgnANggJydHPXr0UI8ePZSTUzfLwwJAfVGveygBoKEoLi7W2rVrg9sAEErooQQAAIAlBEoAAABYQqAEAACAJZxD6YCsLCkQcLoKoHZ5vVJcnNNVAADqAoGyjmVlSQ8+KGVmOl0JULv8fun++wmVABAKCJR1LBA4Eiajo4/04ACNUcn7PBAIrUDp9/udLgEAHEGgdIjXK8XGOl0FUHtCbSpGn8+nvXv3Ol0GADiCi3IAAABgCYESAAAAlhAoAcAGOTk5Sk5OVnJyMksvAgg5nEMJADYoLi7Whx9+GNwGgFBCDyUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACzhKm8AsImX9VQBhCgCJQDYwOfzKTs72+kyAMARDHkDAADAEgIlAAAALCFQAoANcnNzNXDgQA0cOFC5ublOlwMAdYpzKAHABkVFRXr77beD2wAQSuihBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgA5/PJ2OM02UAgCPooQQAAIAlBEoAAABYQqAEABvk5uZqyJAhGjJkCEsvAgg5BEoAsEFRUZFee+01vfbaayy9CCDkECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWsPQiANjA6/Xq8OHDwW0ACCUESgCwgcvlks/nc7oMAHAEQ94AAACwhEAJADbIy8tTWlqa0tLSlJeX53Q5AFCnCJQAYIPCwkLNmTNHc+bMUWFhodPlAECdIlACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYaUcALCB1+vVnj17gtsAEEoIlABgA5fLpRYtWjhdBgA4giFvAAAAWEKgBAAb5OXlacyYMRozZgxLLwIIOQRKALBBYWGhZs6cqZkzZ7L0IoCQQ6AEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwko5AGCD6OhobdmyJbgNAKGEQAkANggLC1NCQoLTZQCAIxjyBgAAgCUESgCwQX5+viZMmKAJEyYoPz/f6XIAoE4RKAHABgUFBXrkkUf0yCOPqKCgwOlyAKBOESgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWsFIOANggOjpa33zzTXAbAEIJgRIAbBAWFqbOnTs7XQYAOIIhbwAAAFhCDyUA2CA/P1/Tpk2TJP3tb39TRESEwxUBQN0hUAKADQoKCjRlyhRJ0oQJEwiUAEIKQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmDYIAGwQFRWlzz//PLgNAKGEQAkANggPD1ePHj2cLgMAHMGQNwAAACyhhxIAbJCfn6/HH39cknTnnXeyUg6AkEKgBAAbFBQU6J577pEk3XrrrQRKACGFIW8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlTBsEADaIiorSqlWrgtsAEEoIlABgg/DwcCUnJztdBgA4giFvAAAAWEIPJQDYoKCgQP/7v/8rSbrpppvk8XgcrggA6g6BEgBskJ+fr9tuu02SlJaWRqAEEFIY8gYAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCtEEAYIPIyEgtW7YsuA0AoYRACQA2cLvdGjhwoNNlAIAjGPIGAACAJfRQAoANCgoKNHfuXEnStddey0o5AEIKgRIAbJCfn69Ro0ZJkoYMGUKgBBBSGPIGAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwrRBAGCDyMhILVy4MLgNAKGEQAkANnC73RoyZIjTZQCAIxjyBgAAgCX0UAKADQoLC7V48WJJ0lVXXSW3m49XAKGDTzwAsEFeXp6GDh0qSTp8+DCBEkBIYcgbAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCfNaAIANIiIiNGvWrOA2AIQSAiUA2MDj8SgtLc3pMgDAEQx5AwAAwBJ6KAHABoWFhVq5cqUkqX///qyUAyCk8IkHADbIy8vTpZdeKomlFwGEHoa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljCvBQDYICIiQk899VRwGwBCCYESAGzg8Xg0ZswYp8sAAEcw5A0AAABL6KEEABsUFRXpo48+kiSdd955Cg8Pd7giAKg7BEoAsEFubq5SUlIkHVl60efzOVwRANQdhrwBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWMG0QANjA4/Fo+vTpwW0ACCUESgCwQUREhCZMmOB0GQDgCIa8AQAAYAk9lABgg6KiIn355ZeSpO7du7P0IoCQQqAEABvk5uaqZ8+eklh6EUDoYcgbAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCdMGAYANPB6PJk2aFNwGgFBCoAQAG0RERGjy5MlOlwEAjmDIGwAAAJbQQwkANiguLtamTZskSZ06dVJYGN/XAYQOAiUA2CAnJ0ddunSRxNKLAEIPX6EBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWMG0QANjA4/Fo/PjxwW0ACCUESgCwQUREhP75z386XQYAOIIhbwAAAFhCDyUA2KC4uFjbtm2TJLVv356lFwGEFAIlANggJydHHTp0kMTSiwBCD1+hAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljBtEADYwO1269Zbbw1uA0Ao4VMPAGwQGRmpp59+2ukyAMARDHkDAADAEnooAcAGxhhlZmZKkvx+v1wul8MVAUDdIVACgA0CgYBatmwpiaUXAYQehrwBAABgCT2UDgkEnK4AqD28vwEgtBAo65jXK/n9UmamlJPjdDVA7fH7j7zfAQCNH4GyjsXFSfffTw8OGj+v98j7HQDQ+BEoHRAXxz+0AACg8eCiHAAAAFhCDyUA2MDtdmvkyJHBbQAIJXzqAYANIiMjNXv2bKfLAABHMOQNAAAAS+ihBAAbGGMU+H/TN3i9XpZeBBBS6KEEABsEAgHFxMQoJiYmGCwBIFQQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwDyUA2CA8PFyDBw8ObgNAKKl2oCwuLtbPP/+sffv2yeVyqVmzZjrxxBMVFkZnJ4DQFRUVpUWLFjldBgA4osop8IcfftDw4cPVpEkTdezYUX369NE555yjjh07qkmTJrr22mv1/fff12atAAAAqIeq1EO5bt06JScnKzIyUtddd53OOOMMNWvWTJL0+++/66uvvtLixYu1fPlyffjhhzrzzDNrtWgAAADUHy5jjDlWo4svvli5ublavny5YmNjy21z6NAhXXrppYqKitLKlSuPeeCDBw8qLi5OWVlZatKkSfUrB4B6JDs7WzExMZKkw4cPy+fzOVwRAFhX1bxWpR7KNWvWaNGiRRWGSUmKjY3Vfffdp6FDh1a/WgAAADRYVTqH0u12Ky8v75jt8vPz5XZz4TgAAEAoqVKgTElJ0f3336/t27dX2GbHjh2aNGmSzj//fNuKAwAAQP1Xpe7EGTNmqG/fvjr55JN1/vnnBy/Kcblc2rdvn77++mt98MEHat68uRYvXlzbNQMAAKAeqVKg7NChgzZs2KDp06dryZIlWrlypUqu5XG5XDr55JN15513avz48fL7/bVaMAAAAOqXKl3l/Ue5ubnav3+/JKlp06aKioqq9oG5yhtAY8JV3gAaI1uv8v6jqKgotW7dusbFAUBjEx4ertTU1OA2AIQSLskGABtERUVp+fLlTpcBAI5gAW4AAABYQqAEAACAJQRKALBBdna2fD6ffD6fsrOznS4HAOoU51ACgE0CgYDTJQCAI+ihBAAAgCWWAuWECRP04IMP2lULAAAAGqAaTWwuSTt37lT79u0VGRmp3bt3Byf0rSomNgfQmDCxOYDGqKp5rcY9lAsWLJDf75fH49Hrr79e04cBAABAA1fjQDlv3jwNGTJEl112mebPn29nTQAAAGhAanSV948//qgvv/xSjz32mPbv369BgwZp7969atGihd31AUCDEBYWpqSkpOA2AISSGgXK+fPnq23btjr33HNVUFCgmJgYLVy4UGPGjLG7PgBoEKKjo5Wenu50GQDgiBp9jZ4/f76GDh0qSfJ4PLrqqqs0b948WwsDAABAw1DtQLl+/Xpt3rxZ11xzTXDf0KFD9emnn+qXX36xtTgAAADUf9UOlPPnz9eJJ56os88+O7jvwgsvVPPmzbk4B0DIys7OVosWLdSiRQuWXgQQcqodKF999VUNGzas1L7w8HANGjSIYW8AIS0zM1OZmZlOlwEAda5agfLHH3/UiSeeqOuuu67MbWlpaWrevLl2795tW3EAAACo/2q8Uo5VrJQDoDFhpRwAjVGtr5QDAAAASARKAAAAWESgBAAAgCU1WikHAFBaWFiYEhMTg9sAEEoIlABgg+joaGVkZDhdBgA4okpfo1evXq3Dhw/Xdi0AAABogKoUKFNSUrRx48bargUAAAANUJUCpUNTVQJAgxEIBJSQkKCEhAQFAgGnywGAOsU5lABgA2OMfvnll+A2AISSKl+K6HK5arMOAAAANFBV7qFMSUmp0lQYLpdLWVlZlooCAABAw1HlQJmcnKwWLVrUZi0AAABogKocKB944AH17NmzNmsBAABAA8RyDgAAALDE8au8s7OzFR4eXmZ/eHi4oqKiSrWrSFhYmKKjo2vUNhAIVHhFpsvlktfrrVHbnJwcFRcXV1iHz+erUdvc3FwVFRXZ0tbr9QYvtsrLy1NhYaEtbaOjo4Pn2+bn56ugoMCWtlFRUcH3SnXaFhQUKD8/v8K2kZGRcrvd1W5bWFiovLy8CttGRETI4/FUu21RUZFyc3MrbOvxeBQREVHttsXFxcrJybGlrdvtVmRkpKQjVzRXNk1OddpW5+++vn1GuFwuderUqcLnyGfE/+Ez4gg+I6rftiF/RlS3bX35jKjstSjFVIHL5TKfffZZVZpWWVZWlpFU4U9qamqp9l6vt8K2SUlJpdr6/f4K2yYmJpZqGx8fX2Hb008/vVTb008/vcK28fHxpdomJiZW2Nbv95dqm5SUVGFbr9dbqm1qamqlr9vRBg8eXGnbw4cPB9uOHDmy0rZ79uwJtr311lsrbbtly5Zg2/Hjx1fa9ptvvgm2nTRpUqVtP//882Db6dOnV9p21apVwbZPPfVUpW2XLVsWbDtr1qxK2y5cuDDYduHChZW2nTVrVrDtsmXLKm371FNPBduuWrWq0rbTp08Ptv38888rbTtp0qRg22+++abStuPHjw+23bJlS6Vtb7311mDbPXv2VNp25MiRwbaHDx+utO3gwYNLvYcra8tnxJEfPiP+74fPiCM/fEYc+eEz4siPXZ8RWVlZpjJV6qGsLPUCAAAgtLn+X8KvcwcPHlRcXJx27typJk2alLmdrury2zKcxXAWw1nVb8tnRM3a8hlxBJ8R1W/LZ8QRjeEzYv/+/WrTpo2ysrLKzWvB+p0OlMcqEAAagkAgoB49ekiSMjIySv3DAAANVVXzmuMX5QBAY2CM0caNG4PbABBKmDYIAAAAlhAoAQAAYEmNh7yzsrL0/fffl3tSbr9+/SwVBQAAgIaj2oGysLBQt9xyi1566aUKrxKq7OohAAAANC7VHvL+17/+pbfeeksvvviijDF66qmn9OyzzyoxMVGnnHKK3nnnndqoEwAAAPVUtQPlyy+/rIkTJ2r48OGSpF69eunGG2/UZ599pvj4eK1atcr2IgGgvnO5XIqPj1d8fHxwPkYACBXVDpQ///yzzjzzzOBEs0dPmHrLLbdo7ty59lUHAA2E1+vV1q1btXXrVuagBBByqh0ofT6f8vPz5XK51KxZM/3yyy/B26Kjo7Vv3z5bCwQAAED9Vu1Aedppp2nLli2SpD59+ujRRx/V9u3btWfPHk2fPl0dO3a0vUgAAADUX9W+ynvYsGH6/vvvJUlTpkxRv379FB8fL+nIOp9vvPGGvRUCQAOQk5MTnDJt9erVpdb6BYDGzvJa3r/++quWLFkil8uliy66qMo9lKzlDaAxyc7OVkxMjCTp8OHD8vl8DlcEANbV2lre27ZtU+vWreXxeCRJ7dq10+233y7pyByV27ZtU/v27WtYNgAAABqaap9D2aFDB61bt67c2zZs2KAOHTpYLgoAAAANR7UDZWUj5EVFRcy/BgAAEGKqHSgllRsa8/Ly9M4778jv91suCgAAAA1Hlc6hnDJliv7nf/5H0pEw2bt37wrb3njjjfZUBgAAgAahSoGyZ8+euvXWW2WM0cyZMzV48GAdf/zxpdpERkaqa9euGjFiRK0UCgD1HSM0AEJVlQLlJZdcoksuuUTSkakxHnjgAS6+AYCj+Hw+7d271+kyAMAR1Z42aNasWbVRBwAAABqoKgXK1atXV+tBS1aLAAAAQONXpUCZnJwcvLLbGFPh1EAltxUVFdlXIQA0ADk5OcFTg9555x2WXgQQUqoUKFetWlXbdQBAg1ZcXKwPP/wwuA0AoaRKgTIpKam26wAAAEADVaOJzUts3rxZH3/8sbKzs+2qBwAAAA1MjQLlSy+9pLZt2+r0009Xv379tHnzZknS0KFD9dxzz9laIAAAAOq3agfKRYsWKS0tTd27d9dTTz1Vam3v7t27a+HChbYWCAAAgPqt2oHyoYce0qhRo7R06VLddNNNpW7r1KmTNm7caFtxAAAAqP+qHSg3bdqka665ptzbmjVrpn379lkuCgAaIq/XK6/X63QZAFDnqr1SjtfrVVZWVrm37dixQ02bNrVcFAA0ND6fjwsUAYSsavdQnnvuuWXOnSwxe/ZsJScn21EXAAAAGohq91A+8MAD6tu3r3r27KkRI0bI5XLpjTfe0KRJk7R69Wp9/vnntVEnAAAA6qlq91AmJibqnXfe0eHDhzVu3DgZYzRt2jR9//33evvtt9WlS5faqBMA6rXc3FwNHDhQAwcOVG5urtPlAECdcpnyxq6r6KefftLu3bvl9/t16qmnVuu+Bw8eVFxcnLKystSkSZOalgAA9UJ2drZiYmIkSYcPH5bP53O4IgCwrqp5rdpD3kc76aSTdNJJJ1l5CAAAADRw1QqUe/fu1bPPPqvVq1dr586dkqQ2bdooJSVFN910k5o3b14rRQIAAKD+qvKQ9/vvv6+rr75aBw8eVHh4uPx+v4wx2rdvn4qKitS0aVMtXrxY/fr1q9KBGfIG0Jgw5A2gMapqXqvSRTl79+7VsGHDFBcXp4ULFyorK0u7du3Sb7/9pqysLL366qvy+XwaPHgwE5sDAACEmCoFyhdeeEFFRUX6+OOPNXjw4FIrQXi9Xg0dOlT//e9/VVBQoBdeeKHWigUAAED9U6VA+e6772r06NFq27ZthW3at2+vUaNGacWKFbYVBwAAgPqvSoFy06ZN6tu37zHbnXfeedq0aZPlogCgofH5fDLGyBjD+ZMAQk6VAuWBAwfUsmXLY7Zr2bKlDhw4YLUmAAAANCBVCpR5eXnyeDzHbOd2u5Wfn2+5KAAAADQcVZ6HcvPmzXK7K2/+3XffWS4IABqi3NxcXX/99ZKkl19+WVFRUQ5XBAB1p0rzUIaFhcnlch3zwYwxcrlcKioqOmZb5qEE0JgwDyWAxsjWpRdnzZplW2EAAABoXKoUKEeOHFnbdQAAAKCBqtJFOQAAAEBFCJQAAACwhEAJAAAASwiUAAAAsKTK81ACACrm9Xp1+PDh4DYAhBICJQDYwOVyMfckgJDFkDcAAAAsIVACgA3y8vKUlpamtLQ05eXlOV0OANSpKi29WBtYehFAY8LSiwAao6rmNXooAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlrBSDgDYwOv1as+ePcFtAAglBEoAsIHL5VKLFi2cLgMAHMGQNwAAACwhUAKADfLy8jRmzBiNGTOGpRcBhByWXgQAG7D0IoDGiKUXAQAAUCcIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsISVcmogKzdLgYKA02UAtcrr8SouKs7pMhqM6OhobdmyJbgNAKGEQFlNWblZenD1g8oMZDpdClCr/F6/7u93P6GyisLCwpSQkOB0GQDgCAJlNQUKAsoMZCraHS2vx+t0OUCtKHmfBwoCBEoAwDERKGvI6/EqNjLW6TKAWpNTmON0CQ1Kfn6+Jk6cKEmaOnWqIiIiHK4IAOoOF+UAgA0KCgr0yCOP6JFHHlFBQYHT5QBAnSJQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALGEeSgCwQXR0tL755pvgNgCEEgIlANggLCxMnTt3droMAHAEQ94AAACwhB5KALBBfn6+pk2bJkn629/+xtKLAEIKgRIAbFBQUKApU6ZIkiZMmECgBBBSGPIGAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwrRBAGCDqKgoff7558FtAAglBEoAsEF4eLh69OjhdBkA4AiGvAEAAGAJPZQAYIP8/Hw9/vjjkqQ777yTlXIAhBQCJQDYoKCgQPfcc48k6dZbbyVQAggpDHkDAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYdogALBBVFSUVq1aFdwGgFBCoAQAG4SHhys5OdnpMgDAEQx5AwAAwBJ6KAHABgUFBfrf//1fSdJNN90kj8fjcEUAUHcIlABgg/z8fN12222SpLS0NAIlgJDCkDcAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASpg0CABtERkZq2bJlwW0ACCUESgCwgdvt1sCBA50uAwAcwZA3AAAALKGHEgBsUFBQoLlz50qSrr32WlbKARBSCJQAYIP8/HyNGjVKkjRkyBACJYCQwpA3AAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEqYNAgAbREZGauHChcFtAAglBEoAsIHb7daQIUOcLgMAHMGQNwAAACyhhxIAbFBYWKjFixdLkq666iq53Xy8AggdfOIBgA3y8vI0dOhQSdLhw4cJlABCCkPeAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAAS5jXAgBsEBERoVmzZgW3ASCUECgBwAYej0dpaWlOlwEAjmDIGwAAAJbQQwkANigsLNTKlSslSf3792elHAAhhU88ALBBXl6eLr30UkksvQgg9DDkDQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIR5LQDABhEREXrqqaeC2wAQSgiUAGADj8ejMWPGOF0GADiCIW8AAABYQg8lANigqKhIH330kSTpvPPOU3h4uMMVAUDdIVACgA1yc3OVkpIi6cjSiz6fz+GKAKDuMOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGHo9H06dPD24DQCghUAKADSIiIjRhwgSnywAARzDkDQAAAEvooQQAGxQVFenLL7+UJHXv3p2lFwGEFAIlANggNzdXPXv2lMTSiwBCD0PeAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAAS5g2CABs4PF4NGnSpOA2AIQSAiUA2CAiIkKTJ092ugwAcARD3gAAALCEHkoAsEFxcbE2bdokSerUqZPCwvi+DiB0ECgBwAY5OTnq0qWLJJZeBBB6+AoNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGHo9H48ePD24DQCghUAKADSIiIvTPf/7T6TIAwBEMeQMAAMASeigBwAbFxcXatm2bJKl9+/YsvQggpBAoAcAGOTk56tChgySWXgQQevgKDQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRpgwDABm63W7feemtwGwBCCZ96AGCDyMhIPf30006XAQCOYMgbAAAAltBDCQA2MMYoMzNTkuT3++VyuRyuCADqDoESAGwQCATUsmVLSSy9CCD0MOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGbrdbI0eODG4DQCjhUw8AbBAZGanZs2c7XQYAOIIhbwAAAFhCDyUA2MAYo0AgIEnyer0svQggpNBDCQA2CAQCiomJUUxMTDBYAkCoIFACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYR5KALBBeHi4Bg8eHNwGgFBCoAQAG0RFRWnRokVOlwEAjmDIGwAAAJYQKAEAAGAJgRIAbJCdnS2XyyWXy6Xs7GynywGAOkWgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMJKOQBgg/DwcKWmpga3ASCUECgBwAZRUVFavny502UAgCMY8gYAAIAlBEoAAABYQqAEABtkZ2fL5/PJ5/Ox9CKAkMM5lABgk0Ag4HQJAOAIeigBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJV3kDgA3CwsKUlJQU3AaAUEKgBAAbREdHKz093ekyAMARfI0GAACAJQRKAAAAWEKgBAAbZGdnq0WLFmrRogVLLwIIOZxDCQA2yczMdLoEAHAEPZQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEq7wBwAZhYWFKTEwMbgNAKCFQAoANoqOjlZGR4XQZAOAIvkYDAADAEgIlAAAALCFQAoANAoGAEhISlJCQoEAg4HQ5AFCnOIcSAGxgjNEvv/wS3AaAUEIPJQAAACwhUAIAAMASAiUAAAAs4RzKGgoUcNI9Gi/e3wCA6iBQVpPX45Xf61dmIFM5hTlOlwPUGr/XL6/H63QZAIAGgEBZTXFRcbq/3/304KDR83q8iouKc7qMBsPlcun0008PbgNAKCFQ1kBcVBz/0AIoxev16ttvv3W6DABwBBflAAAAwBICJQAAACwhUAKADQKBgDp37qzOnTuz9CKAkMM5lABgA2OMNm7cGNwGgFBCDyUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACzhKm8AsIHL5VJ8fHxwGwBCCYESAGzg9Xq1detWp8sAAEcw5A0AAABLCJQAAACwhEAJADbIyclRjx491KNHD+Xk5DhdDgDUKc6hBAAbFBcXa+3atcFtAAgl9FACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASrvIGAJv4/X6nSwAARxAoAcAGPp9Pe/fudboMAHAEQ94AAACwhEAJAAAASwiUAGCDnJwcJScnKzk5maUXAYQczqEEABsUFxfrww8/DG4DQCihhxIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJZwlTcA2MTr9TpdAgA4gkAJADbw+XzKzs52ugwAcARD3gAAALCEQAkAAABLCJQAYIPc3FwNHDhQAwcOVG5urtPlAECd4hxKALBBUVGR3n777eA2AIQSeigBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGCJY1d5G2MkSQcPHnSqBACwzdGr5Bw8eJArvQE0CiU5rSS3VcSxQHno0CFJUrt27ZwqAQBqRZs2bZwuAQBsdejQIcXFxVV4u8scK3LWkuLiYu3cuVOxsbFyuVxOlAAAAIBKGGN06NAhtWnTRmFhFZ8p6VigBAAAQOPARTkAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAc8dlnn+mqq65S+/btFRkZqeOPP17nnHOOxo0bV6rdzJkzNXv27Co/bnp6ulwul9LT0yttN3v2bLlcruCP2+1W69atdc011+iHH36owTM6Ytq0aVqyZEmN63LKxIkT1a1bNzVr1kxRUVE68cQTddNNN+mXX35xujQADQCBEkCdW758ufr06aODBw9q+vTpevfdd/X444/r3HPP1YIFC0q1rW6grK5Zs2ZpzZo1+s9//qPbbrtNS5cuVd++fbV///4aPV5FgbJ79+5as2aNunfvbrHi2nHgwAENHz5cc+bM0YoVKzR+/HgtW7ZMvXr10r59+5wuD0A959jE5gBC1/Tp09WhQwetXLlSbvf/fQxdc801mj59ep3W0qVLFyUmJkqSkpOTVVRUpEmTJmnJkiUaNWqUbcdp0qSJevfubdvjSdLmzZvVsWNHWx7r6aefLvX/ycnJ6tChg1JTU/Xmm29q9OjRthwHQONEDyWAOrdv3z75/f5SYbLE0RPnJiQk6Ntvv9WHH34YHJpOSEgI3v7dd99pwIAB8nq98vv9uuWWW4KrcNVUSbjcvXt3cF9ubq7GjRuns846S3FxcWrWrJnOOeccvfnmm6Xu63K5lJ2drTlz5gTrTU5OllTxkPfSpUt1zjnnyOv1KjY2VhdddJHWrFlTpVpPO+00nX322XrkkUe0ffv2mj/pCrRo0UKSyv09AcDRCJQA6tw555yjzz77THfccYc+++wzFRQUlNtu8eLFOvHEE9WtWzetWbNGa9as0eLFiyUdCXxJSUn65ptvNHPmTL388ss6fPiwbrvtNku1bdmyRZJ06qmnBvfl5eXp999/1/jx47VkyRLNnz9fffv21aBBg/TSSy8F261Zs0bR0dFKTU0N1jtz5swKjzVv3jxdccUVatKkiebPn68XXnhB+/fvV3Jysv773/8es9b33ntP3bp100MPPaT27dsrKSlJ//73v5WZmVnj519YWKicnBytW7dOd911l0499VQNGjSoxo8HIEQYAKhjmZmZpm/fvkaSkWQ8Ho/p06ePeeihh8yhQ4dKte3cubNJSkoq8xj33nuvcblcZv369aX2X3TRRUaSWbVqVaU1zJo1y0gyn376qSkoKDCHDh0yK1asMK1atTL9+vUzBQUFFd63sLDQFBQUmBtuuMF069at1G0+n8+MHDmyzH1WrVpVqq6ioiLTpk0b07VrV1NUVBRsd+jQIdOyZUvTp0+fSus/Wn5+vlm2bJm57rrrTGxsrHG73SY1NdW8/PLLZV7PyuzatSv4O5FkevXqZXbs2FHl+wMIXfRQAqhzzZs310cffaSMjAw9/PDDuuKKK/T999/rr3/9q7p27VqlHrZVq1apc+fOOvPMM0vtHzFiRLVq6d27tzwej2JjYzVgwAA1bdpUb775Zplh3kWLFuncc89VTEyM3G63PB6PXnjhBW3atKlaxyuxefNm7dy5U9dff32pYf6YmBhdffXV+vTTTxUIBKr0WB6PRwMHDtTLL7+sPXv26NVXX5XP59NNN92kli1batGiRVV6HL/fr4yMDP33v//Vc889p99//10pKSnatWtXjZ4jgNBBoATgmMTERN17771atGiRdu7cqbFjx2rr1q1VujBn3759atWqVZn95e2rzEsvvaSMjAx98MEHuvnmm7Vp0yYNHz68VJs33nhDQ4cO1QknnKBXXnlFa9asUUZGhkaPHq3c3NxqHe/o+iWpdevWZW5r06aNiouLa3SleU5OjrKyspSVlaWCggL5fD5FRUVV6b5ut1uJiYk699xzdeONN+qDDz7Qzz//rIcffrjadQAILZxpDaBe8Hg8mjRpkv71r3/pm2++OWb75s2b67fffiuzv7x9lenUqVPwQpyUlBQVFRXp+eef12uvvabBgwdLkl555RV16NBBCxYskMvlCt43Ly+vWsf6Y/2Syu3927lzp8LCwtS0adMqPdahQ4f05ptv6tVXX9W7776ryMhIXXHFFXrzzTd18cUX1/iimrZt26pNmzb6/vvva3R/AKGDHkoAda6iIdSS4eM2bdoE90VGRionJ6dM25SUFH377bfasGFDqf3z5s2zVNv06dPVtGlTPfDAAyouLpZ05OrtiIiIUmHyt99+K3OVd2X1/lHHjh11wgknaN68eTLGBPdnZ2fr9ddfD175XZkFCxZo0KBBatmypW644QaFh4cHh71feeUVpaamWrpC+8cff9T27dt18skn1/gxAIQGAiWAOte/f3+lpqbqmWee0apVq/T+++9rxowZGjRokGJiYnTnnXcG23bt2lUbNmzQggULlJGRoa+//lqSdNddd8nv92vgwIGaPXu23nnnHV133XX67rvvLNXWtGlT/fWvf9WmTZuC4fTSSy/V5s2bdeutt+qDDz7QnDlz1Ldv33KHq7t27ar09HS99dZbWrt2rTZv3lzuccLCwjR9+nStX79el156qZYuXapFixYpJSVFBw4cqNIw84gRI3TgwAE9+eST2r17t958800NGzZM0dHR1XrOX331lS644AI988wzWrlypd577z09+uijSklJUfPmzTV+/PhqPR6AEOT0VUEAQs+CBQvMiBEjzCmnnGJiYmKMx+Mx7du3N9dff73ZuHFjqbZbt241F198sYmNjTWSTHx8fPC2jRs3mosuushERUWZZs2amRtuuMG8+eab1brKOyMjo8xtOTk5pn379uaUU04xhYWFxhhjHn74YZOQkGAiIyNNp06dzHPPPWcmTZpk/vgxun79enPuuecar9drJAWvUP/jVd4llixZYnr16mWioqKMz+czF1xwgfn444+r9Dru3LmzSu2O5bfffjPXXXedOemkk4zX6zURERHmxBNPNLfccovZtm2bLccA0Li5jDlqrAUAAACoJoa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgyf8Pez2h27lu0DEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Event 2: Bite\n", "Start time: 81.227 sec, End time: 82.465 sec\n", "left std ratio: 1.518, right std ratio: 6.700\n", "LM_max_index: 81.672, LL_max_index: 81.954, left delta t: -0.282\n", "RM_max_index: 81.611, RL_max_index: 81.656, right delta t: -0.045\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOsklEQVR4nO3dd3xUVf7/8fckmWQyaQIB6QkWEAGRSBMREisbVATp6iaAK66IDWzLYuDrF1RWXLHgukhRlq5SBAVcBSyLEFaKSlGRIkUgCAlk0nN/f/DLfIkpJLk3uUnm9Xw88nhc75yZ+5lxuHnnnHvPcRiGYQgAAACoID+7CwAAAEDNRqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBCyyfv16ORwOTZgwwe5SaoSSPq/o6GhFR0fbUlNJEhMT5XA4tH//frtLqbbmzJkjh8OhOXPmVPqx+Lf2f/bv3y+Hw6HExES7S4GPI1DCdgUnRIfDoSZNmigvL6/Ydt9++6233RVXXFHFVVYfHo9H06ZNU1xcnOrXry+n06m6deuqe/fueuGFF3TixAm7S6xxqjIMWe2zzz7z/rtYuXKl3eX4nB9//FGTJ09Wjx491LhxYwUGBqpZs2b64x//qN27d5frtQq+h+f/+Pn56aKLLtL111+v2bNnl/m1YmNj5XA4yvt2gAoLsLsAoEBAQICOHDmiNWvWKD4+vsjjM2fOVEBAgHJzc22ornrYvn27+vTpowMHDigqKkp33HGHLr74YqWlpenrr7/WM888o+eff15HjhxRSEiI3eVWyKeffmp3CUU8//zzevrpp9WkSRO7Syli1qxZkiSHw6GZM2fqtttus7miyte5c2ft2rVLkZGRdpei8ePHa9GiRWrbtq369Omj8PBwffvtt5o7d67ee+89rVmzRtdff325XvPGG29U9+7dJUm5ubn65ZdftHz5cg0fPly7d+/Wiy++6G3bpEkT7dq1SxEREZa+L6C8CJSoNrp166bt27dr1qxZRQJldna25s2bp/j4eK1YscKmCu116NAh3XLLLUpJSdHUqVP1yCOPyN/fv1CbrVu36qGHHlJOTo5NVZp36aWX2l1CEY0aNVKjRo3sLqOI06dP64MPPlDnzp3lcrm0cuVKHTt2TBdffLHdpVUqt9tdbUYpevXqpWeeeUbt27cvtH/hwoUaMmSIHnjgAX3//ffles2bbrpJTz/9dKF9+/btU7t27TRt2jRNmDBBwcHBkiSn01ltPgv4Noa8UW0EBwdr0KBB+vDDD5WSklLosRUrViglJUXDhg0r9rmlXeM2YcIEORwOrV+/vtD+999/Xz179lSDBg3kcrnUrFkz9erVS8uWLSvyGjt27NA999yjpk2bKigoSI0aNVKvXr304Ycflum9HT9+XI899pguu+wyBQUFKTIyUnfddZe+++67Mj1fksaNG6fjx4/rL3/5ix5//PEiYVKSOnTooA0bNig8PLzQ/pUrVyouLk4REREKDg7W1VdfrVdeeaXEywvK2v7867d2796tfv36KTIystD/i4yMDD399NNq1qyZXC6X2rZtqxkzZpT4Pou7hvL8/4eLFy9WTEyMgoOD1ahRIz388MPKyMgo1D47O1uvvfaabr31VjVr1kxBQUFq0KCB+vXrp61btxZqm5iY6P1eDRs2rNBw4/ltSvp+vfPOO+ratatCQ0MVGhqqrl276p133inS7vzr/r755hvdeuutCgsLU0REhPr27Vuh6zPnz5+vjIwM3XvvvfrjH/+o3Nxcvfvuu8W2Pf89TJ8+Xa1bt5bL5VJUVJQmTpyo/Pz8Qu1TU1P14osvqmfPnt6h3MaNG+uPf/yj9u7de8Hazpw5o7CwMLVp06bYx/Py8tS4cWPVr19f2dnZkqTMzExNnTpV7du3V0REhEJDQ3XppZdqyJAh+vbbb73PLekayh9//FHDhg1TixYt5HK5FBkZqZiYGI0ZM+aC9VZUYmJikTApSYMHD1bLli21c+fOIuezimjRooVatWqlrKwsnTlzxru/uGsoHQ6HNmzY4N0u+Pn9dZY7duzQ4MGD1ahRIwUGBioqKkqjR4/WyZMnTdcL30OgRLUyfPhwb2/k+WbNmqUGDRpYNpz35ptvqn///vrxxx/Vt29fPf7447rpppv0yy+/FAmUS5cuVefOnbV48WJ16dJFY8aMUe/evXX48GHNnDnzgsfau3evrrnmGk2bNk2XXXaZRo8erfj4eK1evVpdu3bVpk2bLvgaHo9HCxcuVHBwsMaOHVtq24CAAPn5/d8/7WnTpun222/Xjh07NHToUI0aNUoZGRl67LHHNHDgQBmGUej55W0vST/99JO6du2qY8eOKSEhQYmJiQoMDFR+fr7uuOMOvfjii6pTp44eeeQRde3aVY899pimTp16wff9e2+88YaGDx+u1q1b689//rPq1Kmj1157Tffdd1+hdr/99pseffRRZWVlKT4+Xo899phiY2P10UcfqVu3bkpOTva2vfPOO9WnTx9JUp8+fZSUlOT9uZDHHntMiYmJOnTokEaMGKH77rtPhw8fVmJioh5//PFin7NlyxZdf/31CggI0MiRI9WxY0ctW7ZMN910kzIzM8v1ecycOVNOp1ODBw/WgAEDFBwcfMHv5BNPPKGkpCR17dpVI0eOlHQusI8fP75Qu127dunZZ59VcHCw+vbtq0cffVQdO3bU/Pnz1blzZx04cKDU44SFhWnIkCHauXOn/vOf/xR5fNWqVTp69KgSEhIUGBgoSUpISPB+v4cNG6ZRo0apc+fOWrdunf773/+WerwjR46oc+fOmjdvnq6++mo9+uijGjx4sOrXr6/XXnut1OdWFqfTKencv8nzFfyBVJ6big4ePKg9e/aoadOmatCgQaltk5KSFBUV5d0u+Lnzzju9bVasWKHOnTvrww8/VGxsrB599FG1a9dOr7/+uq699lqdOnWqzLUBkiQDsNm+ffsMScatt95qGIZhtGnTxrjqqqu8jx86dMjw9/c3xowZYxiGYUgyWrVqVeg1EhISDEnGvn37irx+UlKSIclYt26dd19MTIwRGBhoHD9+vEj7lJQU7/axY8eM0NBQIyQkxPjmm2+KtP3ll1+82+vWrTMkGUlJSYXadOvWzQgICDDWrl1baP+ePXuMsLAwo127dkVe9/fWr19vSDK6d+9+wbbn27t3rxEQEGA0aNDAOHjwoHd/VlaW0bNnT0OSMXfu3Aq3L/h/J8kYP358kePPnj3bkGT06tXLyM3N9e7fsWOHERgYWOznFRUVZURFRRXaV/D/MCIiwti9e7d3v8fjMVq2bGk4HA7j8OHD3v2ZmZnGoUOHitTz3XffGaGhocZNN91UbJ2zZ88u8hzDKP779fnnnxuSjNatWxunT5/27j99+rRxxRVXGJKML774wru/4PshyVi4cGGh17/33nsNScaCBQuKPX5xtm7dakgy7rjjDu++IUOGGJKML7/8ssT30KJFC+PIkSPe/SdOnDAuuugiIywszMjKyir0Pk6ePFnkdT777DPDz8/PuO+++wrtL+4zTE5ONiQZw4YNK/I6d9xxhyHJ2LVrl/d4DofD6NixY6HvimEYRm5urnHq1Cnvfxf3b+3VV181JBnTpk0rcqwTJ04U2VfZNm3aZEgyOnXqVOSxgu/z77/7BZ/hjTfeaCQlJRlJSUnGuHHjjISEBKNOnTpGgwYNjH//+9+FnlPwbzAhIaHQ/oJ/r8VJSUkxwsPDjaZNmxoHDhwo9Nj8+fMNScZDDz1U/jcNn0YPJaqdYcOGaceOHd4eiTlz5igvL0/Dhw+39DhOp9Pbg3C+evXqebffeecdnT17VmPGjFGHDh2KtG3atGmpx9i6dav+85//KCEhQTfffHOhx1q2bKk//elP+vbbby849P3rr7+W6Xi/N2/ePOXm5mrMmDFq1qyZd39gYKBeeOEFSSp0Z3N52xdo2LCh/vrXvxbZXzD8OmnSpEJD9O3atdO9995brvciSY888ohatWrl/e/g4GANGTJEhmEU6sEKCgoq9gaaNm3aKC4uTp9//rnp60wLPocJEyYUuiEiIiLC27tZ3GfVo0cPDRo0qNC+gu/2+T2nF1LQE3n+5/jHP/6x0GPFGT9+fKHrQSMjI9WnTx+dOXNGe/bsKfQ+6tatW+T5cXFxatOmjf79739fsMaOHTsqJiZGixcvLjRM++uvv+qjjz5S9+7dvdf/ORwOGYahoKCgIpdz+Pv766KLLrrg8SR5ry08X1XfvJOamqqEhAT5+flpypQpRR5/6KGHtGvXLj300EPFPv/TTz/VxIkTNXHiRE2aNEnvvPOOzpw5oyFDhqhjx46m63v33XeVlpam559/Xs2bNy/02JAhQxQTE6OFCxeaPg58CzfloNq599579cwzz2jWrFm65pprNGfOHHXp0kVXXnmlZccYOHCgnn76abVt21aDBw9WbGysunfvXuSX1ubNmyVJt9xyS4WO8/XXX0s69wu0uOGtgmlFdu/erbZt21boGKUpuF4wNja2yGNdu3ZVcHCwtm3bVuH2Bdq3b+8dtjzf9u3b5Xa7FRMTU+Sx66+/vkyXDJyvuNcpCNmnT58utH/btm2aMmWKvvzyS/36669FAmRKSoqpG21K+6wK9hX3WZXnPZQkKytL8+bN00UXXaTbb7/du//mm29Wo0aNtHjxYr366qsKDQ01dfz169frlVde0aZNm5SSklJohoXi/n8XZ+TIkRo5cqQWLFig+++/X9K5oJ2bm1voUoXw8HD16tVLq1evVkxMjPr376/rr79eXbp0KdOxbrvtNj399NMaNWqUPvnkE/Xq1Uvdu3dXy5Yty1Tntm3bilzuEh0dXe75HTMzM9WvXz/t3r1bkyZNKvb7ERkZWWrILZhVQDp3renhw4c1d+5cjR8/XuvXr1dycnKxfwyXVcF56euvv9ZPP/1U7HtISUlRSkpKtbiTHjUDgRLVToMGDRQfH68FCxbojjvu0E8//XTB6wbL68knn1S9evX0j3/8Qy+//LKmTp2qgIAAxcfH65VXXlGLFi0k/d8v2IpOF/Pbb79JOne92KpVq0psl56eXurrNGzYUJJ0+PDhch0/LS1Nkkq867dBgwaFXrO87QuU1D41NbVQT2dZnlOa4qZGKbg+7fwbhv7zn//ohhtukHTuj4HLL79coaGhcjgcWrZsmbZv366srKxyH/98aWlp8vPzU/369Ys8dvHFF8vPz0+pqakVfg+lWbp0qU6dOqU//elPCgoK8u739/fX3XffrZdeekmLFi3SiBEjKnz8JUuWaNCgQQoNDdWtt96q6Ohoud1u73ydF7qGssDQoUM1ZswYvf32295AOWvWLEVERGjAgAGF2r733nuaPHmyFixYoHHjxkk6dy3m8OHDNXnyZLnd7hKP06JFC23cuFETJ07Uxx9/rCVLlkiSWrVqpeeee67IsX5v27ZtmjhxYqF9PXv2LFegzMrKUt++ffXZZ5/pmWee0V/+8pcyP7ck/v7+at68ucaNG6c9e/Zo7ty5WrBggbc3uiIKzktvvPFGqe3S09MJlCgzhrxRLQ0fPlynTp3SiBEjvMOapSm4CaW4OSqL+6XucDh03333acuWLTpx4oSWLl2qfv36acWKFerdu7f3F2tBj2V5g1yBgrutX3vtNRmGUeJPQkJCqa/TqVMnBQYGasuWLd7QV57jHzt2rNjHjx8/XuiO8PK2L1DSBMoRERE6fvx4sY+VdAwrTJo0SVlZWfr000+1YsUKTZ06VRMnTtSECRO84dys8PBw5efnFzuR/PHjx5Wfn1/sZ2WFgp7dGTNmFJkI+6WXXirUpqImTJggl8ul//73v1qyZIn+9re/eT9Dl8tV5tcJDQ3V0KFDlZycrB07dmj9+vX68ccfdffddxcJiCEhIZo0aZJ+/vln/fzzz5o5c6auuOIKTZs2TY899tgFj3XVVVfp/fff12+//aaNGzfq2Wef1bFjxzRo0CB99dVXpT43MTGxyL/L388MUZrMzEz16dNHq1ev1pNPPqnJkyeX+bll1blzZ0nSN998Y+p1Cr6X3377bannpYIbe4CyIFCiWoqPj1fDhg11+PBh3XXXXRf8xVynTh1JxQe/308T83v16tXTnXfeqUWLFumGG27Qrl27vMNABSfwtWvXVuRtqEuXLpKkjRs3Vuj5BdxutwYPHqyMjIwL3h2dm5vrnQKm4LrP4n4xbt68WRkZGbr66qu9+8rb/kLat28vj8dT7C/AL774osyvU1579+5V3bp1dd111xXaX1ItBdfslbWHUCr9syqYsqU8n1VZ7d+/X59++qkuvvhijRgxotif5s2ba+PGjdq1a1eFj7N37161bt1al19+eaH9R44cKdO0QecruJv87bff9gbd39+Z/3stWrTQ8OHDtWHDBoWGhpZr/lmn06muXbtq4sSJevXVV2UYRqWuIpSZmak777xTa9as0dixYwtNPG6lgp7F30/xVJzSvtNWnZeA8xEoUS0FBARoxYoVWrp0qSZNmnTB9gUXqv/+Joj33nvP+8v9fGvWrCnSm5mTk+M9YRdc2J+QkKDQ0FBNnTq12OvhLtRz2blzZ3Xp0kULFizQokWLijyen59fbH3FmTRpkurXr69Jkybp1VdfLfaXyo4dOxQbG+vtxRw6dKgCAgL08ssv68iRI4Xea8E1WucP6ZW3/YUU3DAybty4Qr/YClYSqSxRUVE6depUoQml8/LyNHbs2GJ7FAtuPjl06FCZj1HQqzxx4sRCvcZpaWneodML9TxXxOzZs2UYhh544AG9/fbbxf4UzLtoppcyKipKP/30U6Ge5MzMTP35z38u92pVMTExuuaaa/Svf/1L77//vq655poiN7mdOHHCe83y+U6dOqWsrKxib7Y5X3JycrG94QX1X+j5FVXQM7lmzRo9/vjj+tvf/nbB56SkpGj37t3lmp8yNTXVe34ry8o7pX2nhw0bprCwMI0bN67YSdc9Ho/3OkugrLiGEtVWp06d1KlTpzK1vfPOO9WiRQvNmTNHv/zyizp06KBdu3bps88+U3x8vD766KNC7QcNGiS3263u3bsrKipKOTk5+uSTT7Rz504NGjTIe+djgwYN9O6772rw4MHq3Lmz7rjjDrVq1UopKSnatGmToqOji50I/XwLFixQXFycBg8erFdeeUXXXHONXC6XDh48qI0bN+rEiRNlmn+wadOmWrt2re6880498sgj+vvf/64bb7zRu/Ti5s2blZycrPDwcO8F+5deeqlefPFFjRkzRldddZUGDhyokJAQrVy5Urt371afPn10zz33eI9R3vYXkpCQoPnz52v16tXq0KGD/vCHP+i3337TggULdMstt1Rar9Ho0aO1du1ade/eXQMHDpTL5dL69et1+PBhxcbGFulVvPbaaxUcHKxXXnlFaWlp3usif79ayfl69Oih0aNH67XXXlPbtm111113yTAMffDBB/rll1/08MMPq0ePHpa+r/z8fO96z6UF+7vvvltPPPGE5s6dq+eff75CN3CMHj1ao0ePVocOHdS/f3/l5ubqk08+kWEYat++vbZv316u1xs5cqT3GsrieicPHz6sLl26qE2bNoqJiVGTJk108uRJLV++XDk5OXryySdLff158+Zp+vTpio2N1WWXXabw8HDt3LlTH330kSIjIy2fJaLAAw88oLVr16phw4YKCwsr9ua7xMTEQpP1v/7665o4caKSkpKKbf/vf//be07Iz8/X4cOHvYs73HzzzbrrrrsuWNcNN9yg9957TwMGDFB8fLxcLpfatWun3r17q379+lqwYIEGDBig9u3bq1evXrriiiuUmZmpAwcOaMOGDerWrZtWr15d0Y8FvqjqZigCivf7eSgvRMXMQ2kYhvHzzz8bffr0McLCwoyQkBDjxhtvNJKTk4udh3L69OnGHXfcYURFRRkul8uoV6+e0aVLF+Ott94ycnJyirz21q1bjYEDBxoXX3yx4XQ6jUaNGhl/+MMfjJUrV3rblDQPpWEYxm+//Wb89a9/Ndq2bWsEBwcboaGhxuWXX24MHTrU+OCDD8r0vgukp6cbr7zyitGzZ08jMjLSCAgIMC666CLj2muvNf73f/+30DyaBZYvX2707NnTCAsLM4KCgox27doZU6dOLfa9lqd9SXPg/b7eJ5980mjSpIkRFBRkXHnllcZbb71V4udV2jyU5/8/LFDSHJLvvfeeERMTY7jdbiMyMtIYOHCgsXfv3hLnLF21apXRqVMnIzg42DtfZIHS5jmdNWuW0alTJ8Ptdhtut9vo1KmTMWvWrCLtSvt+lOVzNAzDWL16tXeewgu56667DEnG+++/f8H3UNznm5+fb/zjH/8w2rRpY7hcLqNhw4bGiBEjjGPHjhU7x+GF5vI8c+aM4XQ6DbfbbaSmphZ5/NSpU8aECROMHj16GI0aNTICAwONxo0bG7169TLWrFlTqG1xn+XXX39tjBw50mjbtq1x0UUXGcHBwcbll19uPPzww4XmVLVawWdR2s/vv7cXmofy9z+hoaFG586djb///e9GdnZ2oeeU9N3JyckxnnzySaN58+ZGQEBAsW12795tjBgxwoiKijICAwONOnXqGO3atTMefvhhY/PmzRZ9QvAVDsMoZtkLAAAstHnzZnXp0kXDhg3TrFmz7C4HgMW4hhIAUOkK7j5/4IEHbK4EQGXgGkoAQKU4ePCg5s+fr++//15LlixRr169vDMnAKhdGPIGAFSK9evXKy4uTqGhobrhhhv01ltvWTYPKIDqhUAJAAAAU7iGEgAAAKbYdg1lfn6+jhw5orCwsBKXbQMAAIB9DMPQmTNn1LhxY+8yx8WxLVAeOXJEzZo1s+vwAAAAKKNffvlFTZs2LfFx2wJlWFiYpHMFXmidZgCo7tLT09W4cWNJ5/5gDgkJsbkiADAvLS1NzZo18+a2ktgWKAuGucPDwwmUAGo8f39/73Z4eDiBEkCtcqHLE7kpBwAAAKYQKAEAAGAKgRIAAACmVOulF/Pz85WdnW13GbWC0+ksdI0XAACAVaptoMzOzta+ffuUn59vdym1xkUXXaSGDRsy7ycAALBUtQyUhmHo6NGj8vf3V7NmzUqdSBMXZhiGPB6Pjh8/Lklq1KiRzRUBtY+/v7/i4+O92wDgS6ploMzNzZXH41Hjxo3ldrvtLqdWCA4OliQdP35cDRo04BceYDGXy6VVq1bZXQYA2KJadv3l5eVJkgIDA22upHYpCOc5OTk2VwIAAGqTahkoC3Ctn7X4PAEAQGWo1oESAGqK9PR0hYSEKCQkROnp6XaXAwBVqlpeQ1mS1FTJ46m647ndUkRE1R0PQM3mqcoTFABUIzUmUKamSs89J6WkVN0xIyOl8eOrJlQahqGRI0fqvffe06lTp7R161ZdffXVlX9gAAAAk2pMoPR4zoXJ4OBzPYdVdTyPp+yBMjExUadPn9ayZcvKfbzVq1drzpw5Wr9+vS655BJFRkbK4XBo6dKluvPOO8v9egAAAFWlxgTKAm63FBZWNcfKyKia40jS3r171ahRI3Xr1q3qDgoAAGABbsqpIjt37lR8fLxCQ0N18cUX695771XK/x+/T0xM1OjRo3Xw4EE5HA5FR0crOjpaktS3b1/vPgAAgOqIQFkFjh49qp49e+rqq6/Wli1btHr1ah07dkwDBw6UJE2bNk3/8z//o6ZNm+ro0aNKTk5WcnKyJGn27NnefQAAANVRjRvyronefPNNxcTEaPLkyd59s2bNUrNmzfTDDz+oZcuWCgsLk7+/vxo2bFjouQXrbwOo3vz8/NSzZ0/vNgD4EgJlFfjvf/+rdevWKTQ0tMhje/fuVcuWLW2oCoCVgoODtX79ervLAABbECirQH5+vm6//Xa9+OKLRR5r1KiRDRUBAABYh0BZBWJiYvT+++8rOjpaAQFl/8idTqd3XXMAAIDqqsYFyqpaiKKix0lNTdW2bdsK7Rs5cqRmzJihIUOG6IknnlBkZKR++uknLVy4UDNmzJC/v3+xrxUdHa1PP/1U1113nYKCglSnTp2KFQWg0qWnp3tnY9i/f79CQkLsLQgAqlCNCZRu97mVa1JSqm5+yMjI8k+ivn79enXo0KHQvoSEBH311Vd66qmndOuttyorK0tRUVHq1atXqRfvT506VY8//rhmzJihJk2aaP/+/RV4FwCqSkpVLuUFANWIwzAMw44Dp6WlKSIiQqmpqQoPDy/0WGZmpvbt26cWLVrI5XJ597OWtzklfa4AzEtPT/feeHf27Fl6KAHUCqXltfPVmB5K6Vy4q00BDwAAoDZgsjQAAACYQqAEAACAKQRKAAAAmFKjrqEEgOrKz89PHTt29G4DgC8hUAKABYKDg5WcnGx3GQBgC/6MBgAAgCkESgAAAJhSo4a8UzNT5cmpupnN3U63IlxMfAngwjwej6688kpJ0s6dO+Uu7zJbAFCD1ZhAmZqZquc+f04pnqpb2izSHanxPcZbGiodDoeWLl2qO++8s0zt169fr7i4OJ06dUoXXXSRZXUAsJZhGDpw4IB3GwB8SY0JlJ4cj1I8KQoOCJbbWfl/+Rccz5PjKXOgTExM1DvvvCNJ8vf3V+PGjdW7d29NnjxZderUkSQdPXrUu22VCRMmaNmyZdq2bZulrwsAAFAWNSZQFnA73QoLCquSY2XkZpT7Ob169dLs2bOVm5urnTt3avjw4Tp9+rQWLFggSWrYsKHVZQIAANiKm3IsFhQUpIYNG6pp06a65ZZbNGjQIK1du9b7uMPh0LJly7z//Z///EdXX321XC6XOnbsqGXLlsnhcBTpbfzvf/+rjh07yu12q1u3btqzZ48kac6cOZo4caK2b98uh8Mhh8OhOXPmVME7BQAAOIdAWYl+/vlnrV69Wk6ns9jHz5w5o9tvv13t2rXTN998o+eee05PPfVUsW3HjRunqVOnasuWLQoICNDw4cMlSYMGDdKYMWPUpk0bHT16VEePHtWgQYMq7T0BAAD8Xo0b8q7uVq5cqdDQUOXl5SkzM1OS9PLLLxfbdt68eXI4HJoxY4ZcLpeuvPJKHT58WH/605+KtJ00aZJ69uwpSXr66afVu3dvZWZmKjg4WKGhoQoICGA4HQAA2IJAabG4uDi9+eab8ng8evvtt/XDDz9o9OjRxbbds2ePrrrqKrlcLu++zp07F9v2qquu8m43atRIknT8+HE1b97cwuoBVJTD4fBOG+RwOGyuBgCqFkPeFgsJCdFll12mq666Sq+++qqysrI0ceLEYtsahlHkF09J042cP2xe8Jz8/HyLqgZgltvt1vfff6/vv/+eOSgB+BwCZSVLSkrSSy+9pCNHjhR57IorrtCOHTuUlZXl3bdly5ZyHyMwMFB5eXmm6gQAAKioGhcoPTkenck6U+k/Vq3IExsbqzZt2mjy5MlFHhs6dKjy8/N1//33a9euXVqzZo1eeuklSeUbMouOjta+ffu0bds2paSkFAqoAAAAla3GXEPpdroV6Y5UiielQvNDVkSkO9KSSdQff/xxDRs2rMgd3OHh4frwww/15z//WVdffbXatWunZ599VkOHDi10XeWF3HXXXfrggw8UFxen06dPa/bs2UpMTDRdN4Cy83g86tSpkyQpOTmZYW8APsVh2LRGWFpamiIiIpSamqrw8PBCj2VmZmrfvn1q0aJFoWDlC2t5z5s3T8OGDVNqaqqCg4Mtfe2SPlcA5qWnpys0NFSSdPbsWYWEhNhcEQCYV1peO1+N6aGUpAhXRJUHvMr27rvv6pJLLlGTJk20fft2PfXUUxo4cKDlYRIAAKCy1KhAWRv9+uuvevbZZ/Xrr7+qUaNGGjBggCZNmmR3WQAAAGVGoLTZk08+qSeffNLuMgAAACqsxt3lDQAAgOqlWgdKm+4XqrWYCB0AAFSGajnk7XQ65XA4dOLECdWvX59lzEwyDEPZ2dk6ceKE/Pz8FBgYaHdJQK3jcDgUFRXl3QYAX1ItA6W/v7+aNm2qQ4cOaf/+/XaXU2u43W41b95cfn7VumMaqJHcbjfnKwA+q1oGSkkKDQ3V5ZdfrpycHLtLqRX8/f0VEBBAzwkAALBctQ2U0rkQ5O/vb3cZAAAAKAVjnwBggYyMDHXq1EmdOnVSRkbVLA8LANVFte6hBICaIj8/X1u2bPFuA4AvoYcSAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmcJc3AFgkMjLS7hIAwBYESgCwQEhIiE6cOGF3GQBgC4a8AQAAYAqBEgAAAKYQKAHAAhkZGYqNjVVsbCxLLwLwOVxDCQAWyM/P14YNG7zbAOBL6KEEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIAp3OUNABZxu912lwAAtiBQAoAFQkJClJ6ebncZAGALhrwBAABgCoESAAAAphAoAcACmZmZ6t27t3r37q3MzEy7ywGAKsU1lABggby8PH300UfebQDwJfRQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATGHaIACwQEhIiAzDsLsMALAFPZQAAAAwhUAJAAAAUwiUAGCBzMxMDRgwQAMGDGDpRQA+x2HYdNFPWlqaIiIilJqaqvDwcDtKAADLpKenKzQ0VJJ09uxZhYSE2FwRAJhX1rxGDyUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUll4EAAu43W6dPXvWuw0AvoRACQAWcDgczD0JwGcx5A0AAABTCJQAYIGsrCwlJiYqMTFRWVlZdpcDAFWKpRcBwAIsvQigNmLpRQAAAFQJAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAExhpRwAsIDb7dbx48e92wDgSwiUAGABh8Oh+vXr210GANiCIW8AAACYQqAEAAtkZWVp1KhRGjVqFEsvAvA5LL0IABZg6UUAtRFLLwIAAKBKECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKK+UAgAWCg4O1b98+7zYA+BICJQBYwM/PT9HR0XaXAQC2YMgbAAAAphAoAcAC2dnZeuKJJ/TEE08oOzvb7nIAoEqx9CIAWIClFwHURiy9CAAAgCpBoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCmslAMAFggODtZ3333n3QYAX0KgBAAL+Pn5qU2bNnaXAQC2YMgbAAAAptBDCQAWyM7O1uTJkyVJf/nLXxQYGGhzRQBQdVh6EQAswNKLAGojll4EAABAlSBQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFOahBAALuFwubd682bsNAL6EQAkAFvD391enTp3sLgMAbMGQNwAAAEyhhxIALJCdna1p06ZJkh555BGWXgTgU1h6EQAswNKLAGojll4EAABAlSBQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFOahBAALuFwurVu3zrsNAL6EQAkAFvD391dsbKzdZQCALRjyBgAAgCn0UAKABXJycvTPf/5TknT//ffL6XTaXBEAVB2WXgQAC7D0IoDaiKUXAQAAUCUIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIV5KAHAAkFBQVq5cqV3GwB8CYESACwQEBCg3r17210GANiCIW8AAACYQg8lAFggJydH8+bNkyTdfffdLL0IwKew9CIAWIClFwHURiy9CAAAgCpBoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCnMQwkAFggKCtLixYu92wDgSwiUAGCBgIAADRgwwO4yAMAWDHkDAADAFHooAcACubm5Wrp0qSSpb9++Cgjg9ArAd3DGAwALZGVlaeDAgZLOLb1IoATgSxjyBgAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmMK8FgBggcDAQM2ePdu7DQC+hEAJABZwOp1KTEy0uwwAsAVD3gAAADCFHkoAsEBubq7WrFkjSbr11ltZKQeAT+GMBwAWyMrK0m233SaJpRcB+B6GvAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYwrwUAWCAwMFCvv/66dxsAfAmBEgAs4HQ6NWrUKLvLAABbMOQNAAAAU+ihBAAL5OXl6YsvvpAkXX/99fL397e5IgCoOgRKALBAZmam4uLiJJ1bejEkJMTmigCg6jDkDQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVpgwDAAk6nU1OmTPFuA4AvcRiGYdhx4LS0NEVERCg1NVXh4eF2lAAAAIBSlDWvMeQNAAAAUxjyBgAL5OXl6ZtvvpEkxcTEsPQiAJ9CoAQAC2RmZqpz586SWHoRgO9hyBsAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAK0wYBgAWcTqeSkpK82wDgS1h6EQAAAMVi6UUAAABUCYa8AcAC+fn52rVrlySpdevW8vPj73UAvoNACQAWyMjIUNu2bSWx9CIA38Of0AAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFOYNggALOB0OjV27FjvNgD4EpZeBAAAQLFYehEAAABVgiFvALBAfn6+Dh48KElq3rw5Sy8C8CkESgCwQEZGhlq0aCGJpRcB+B7+hAYAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJjCtEEAYIGAgAA9+OCD3m0A8CWc9QDAAkFBQXrjjTfsLgMAbMGQNwAAAEyhhxIALGAYhlJSUiRJkZGRcjgcNlcEAFWHQAkAFvB4PGrQoIEkll4E4HsY8gYAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJjCtEEAYIGAgAAlJCR4twHAl3DWAwALBAUFac6cOXaXAQC2YMgbAAAAptBDCQAWMAxDHo9HkuR2u1l6EYBPoYcSACzg8XgUGhqq0NBQb7AEAF9BoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJjCPJQAYAF/f3/179/fuw0AvqTcgTI/P18///yzTp48KYfDobp16+qSSy6Rnx+dnQB8l8vl0pIlS+wuAwBsUeYU+OOPP2rIkCEKDw9Xq1at1K1bN1177bVq1aqVwsPDdffdd+uHH36ozFoBAABQDZWph3Lr1q2KjY1VUFCQ7rnnHl111VWqW7euJOm3337Tjh07tHTpUq1atUobNmxQ+/btK7VoAAAAVB8OwzCMCzW65ZZblJmZqVWrViksLKzYNmfOnNFtt90ml8ulNWvWXPDAaWlpioiIUGpqqsLDw8tfOQBUI+np6QoNDZUknT17ViEhITZXBADmlTWvlamHcuPGjVqyZEmJYVKSwsLC9PTTT2vgwIHlrxYAAAA1VpmuoQwICFBWVtYF22VnZysggBvHAQAAfEmZAmVcXJzGjx+vQ4cOldjm8OHDSkpK0g033GBZcQAAAKj+ytSdOHXqVHXv3l2XXXaZbrjhBu9NOQ6HQydPntS3336rzz77TPXq1dPSpUsru2YAAABUI2UKlC1atND27ds1ZcoULVu2TGvWrFHBvTwOh0OXXXaZHnnkEY0dO1aRkZGVWjAAAACqlzLd5f17mZmZOnXqlCSpTp06crlc5T4wd3kDqE24yxtAbWTpXd6/53K51KhRowoXBwC1jb+/v+Lj473bAOBLuCUbACzgcrm0atUqu8sAAFuwADcAAABMIVACAADAFAIlAFggPT1dISEhCgkJUXp6ut3lAECV4hpKALCIx+OxuwQAsAU9lAAAADDFVKB84okn9Nxzz1lVCwAAAGqgCk1sLklHjhxR8+bNFRQUpGPHjnkn9C0rJjYHUJswsTmA2qisea3CPZSLFi1SZGSknE6n3n///Yq+DAAAAGq4CgfK+fPna8CAAbr99tu1YMECK2sCAABADVKhu7x/+uknffPNN3rllVd06tQp9evXTydOnFD9+vWtrg8AagQ/Pz/17NnTuw0AvqRCgXLBggVq2rSprrvuOuXk5Cg0NFSLFy/WqFGjrK4PAGqE4OBgrV+/3u4yAMAWFfozesGCBRo4cKAkyel0qm/fvpo/f76lhQEAAKBmKHeg3LZtm/bs2aPBgwd79w0cOFBff/21Dhw4YGlxAAAAqP7KHSgXLFigSy65RNdcc41330033aR69epxcw4An5Wenq769eurfv36LL0IwOeUO1AuXLhQgwYNKrTP399f/fr1Y9gbgE9LSUlRSkqK3WUAQJUrV6D86aefdMkll+iee+4p8lhiYqLq1aunY8eOWVYcAAAAqr8Kr5RjFivlAKhNWCkHQG1U6SvlAAAAABKBEgAAACYRKAEAAGBKhVbKAQAU5ufnp44dO3q3AcCXECgBwALBwcFKTk62uwwAsEWZ/oz+/PPPdfbs2cquBQAAADVQmQJlXFycdu7cWdm1AAAAoAYqU6C0aapKAKgxPB6PoqOjFR0dLY/HY3c5AFCluIYSACxgGIYOHDjg3QYAX1LmWxEdDkdl1gEAAIAaqsw9lHFxcWWaCsPhcCg1NdVUUQAAAKg5yhwoY2NjVb9+/cqsBQAAADVQmQPls88+q86dO1dmLQAAAKiBWM4BAAAApth+l3d6err8/f2L7Pf395fL5SrUriR+fn4KDg6uUFuPx1PiHZkOh0Nut7tCbTMyMpSfn19iHSEhIRVqm5mZqby8PEvaut1u781WWVlZys3NtaRtcHCw93rb7Oxs5eTkWNLW5XJ5vyvlaZuTk6Ps7OwS2wYFBSkgIKDcbXNzc5WVlVVi28DAQDmdznK3zcvLU2ZmZoltnU6nAgMDy902Pz9fGRkZlrQNCAhQUFCQpHN3NJc2TU552pbn3311O0c4HA61bt26xPfIOeL/cI44h3NE+dvW5HNEedtWl3NEaZ9FIUYZOBwOY9OmTWVpWmapqamGpBJ/4uPjC7V3u90ltu3Zs2ehtpGRkSW27dixY6G2UVFRJba98sorC7W98sorS2wbFRVVqG3Hjh1LbBsZGVmobc+ePUts63a7C7WNj48v9XM7X//+/Utte/bsWW/bhISEUtseP37c2/bBBx8ste2+ffu8bceOHVtq2++++87bNikpqdS2mzdv9radMmVKqW3XrVvnbfv666+X2nblypXetrNnzy617eLFi71tFy9eXGrb2bNne9uuXLmy1Lavv/66t+26detKbTtlyhRv282bN5faNikpydv2u+++K7Xt2LFjvW337dtXatsHH3zQ2/b48eOltk1ISPC2PXv2bKlt+/fvX+g7XFpbzhHnfjhH/N8P54hzP5wjzv1wjjj3Y9U5IjU11ShNmXooS0u9AAAA8G2O/5/wq1xaWpoiIiJ05MgRhYeHF3mcruri2zKcxXAWw1nlb8s5omJtOUecwzmi/G05R5xTG84Rp06dUuPGjZWamlpsXvPWb3egvFCBAFATeDwederUSZKUnJxc6BcDANRUZc1rtt+UAwC1gWEY2rlzp3cbAHwJ0wYBAADAFAIlAAAATKnwkHdqaqp++OGHYi/K7dGjh6miAAAAUHOUO1Dm5ubqgQce0LvvvlviXUKl3T0EAACA2qXcQ95///vf9eGHH2rWrFkyDEOvv/663nrrLXXs2FGXX365Pv7448qoEwAAANVUuQPl3LlzNW7cOA0ZMkSS1KVLF913333atGmToqKitG7dOsuLBIDqzuFwKCoqSlFRUd75GAHAV5Q7UP78889q3769d6LZ8ydMfeCBBzRv3jzrqgOAGsLtdmv//v3av38/c1AC8DnlDpQhISHKzs6Ww+FQ3bp1deDAAe9jwcHBOnnypKUFAgAAoHord6C84oortG/fPklSt27d9PLLL+vQoUM6fvy4pkyZolatWlleJAAAAKqvct/lPWjQIP3www+SpIkTJ6pHjx6KioqSdG6dzw8++MDaCgGgBsjIyPBOmfb5558XWusXAGo702t5//LLL1q2bJkcDoduvvnmMvdQspY3gNokPT1doaGhkqSzZ88qJCTE5ooAwLxKW8v74MGDatSokZxOpySpWbNmGj16tKRzc1QePHhQzZs3r2DZAAAAqGnKfQ1lixYttHXr1mIf2759u1q0aGG6KAAAANQc5Q6UpY2Q5+XlMf8aAACAjyl3oJRUbGjMysrSxx9/rMjISNNFAQAAoOYo0zWUEydO1P/8z/9IOhcmu3btWmLb++67z5rKAAAAUCOUKVB27txZDz74oAzD0PTp09W/f39dfPHFhdoEBQWpXbt2Gjp0aKUUCgDVHSM0AHxVmQLlH/7wB/3hD3+QdG5qjGeffZabbwDgPCEhITpx4oTdZQCALco9bdDs2bMrow4AAADUUGUKlJ9//nm5XrRgtQgAAADUfmUKlLGxsd47uw3DKHFqoILH8vLyrKsQAGqAjIwM76VBH3/8MUsvAvApZQqU69atq+w6AKBGy8/P14YNG7zbAOBLyhQoe/bsWdl1AAAAoIaq0MTmBfbs2aOvvvpK6enpVtUDAACAGqZCgfLdd99V06ZNdeWVV6pHjx7as2ePJGngwIGaMWOGpQUCAACgeit3oFyyZIkSExMVExOj119/vdDa3jExMVq8eLGlBQIAAKB6K3egfP755zVs2DCtWLFC999/f6HHWrdurZ07d1pWHAAAAKq/cgfKXbt2afDgwcU+VrduXZ08edJ0UQBQE7ndbrndbrvLAIAqV+6Vctxut1JTU4t97PDhw6pTp47pogCgpgkJCeEGRQA+q9w9lNddd12RaycLzJkzR7GxsVbUBQAAgBqi3D2Uzz77rLp3767OnTtr6NChcjgc+uCDD5SUlKTPP/9cmzdvrow6AQAAUE2Vu4eyY8eO+vjjj3X27FmNGTNGhmFo8uTJ+uGHH/TRRx+pbdu2lVEnAFRrmZmZ6t27t3r37q3MzEy7ywGAKuUwihu7LqO9e/fq2LFjioyMVMuWLcv13LS0NEVERCg1NVXh4eEVLQEAqoX09HSFhoZKks6ePauQkBCbKwIA88qa18o95H2+Sy+9VJdeeqmZlwAAAEANV65AeeLECb311lv6/PPPdeTIEUlS48aNFRcXp/vvv1/16tWrlCIBAABQfZV5yPvTTz/VXXfdpbS0NPn7+ysyMlKGYejkyZPKy8tTnTp1tHTpUvXo0aNMB2bIG0BtwpA3gNqorHmtTDflnDhxQoMGDVJERIQWL16s1NRUHT16VL/++qtSU1O1cOFChYSEqH///kxsDgAA4GPKFChnzpypvLw8ffXVV+rfv3+hlSDcbrcGDhyoL7/8Ujk5OZo5c2alFQsAAIDqp0yBcu3atRo+fLiaNm1aYpvmzZtr2LBhWr16tWXFAQAAoPorU6DctWuXunfvfsF2119/vXbt2mW6KACoaUJCQmQYhgzD4PpJAD6nTIHy9OnTatCgwQXbNWjQQKdPnzZbEwAAAGqQMgXKrKwsOZ3OC7YLCAhQdna26aIAAABQc5R5Hso9e/YoIKD05rt37zZdEADURJmZmbr33nslSXPnzpXL5bK5IgCoOmWah9LPz08Oh+OCL2YYhhwOh/Ly8i7YlnkoAdQmzEMJoDaydOnF2bNnW1YYAAAAapcyBcqEhITKrgMAAAA1VJluygEAAABKQqAEAACAKQRKAAAAmEKgBAAAgCllnocSAFAyt9uts2fPercBwJcQKAHAAg6Hg7knAfgshrwBAABgCoESACyQlZWlxMREJSYmKisry+5yAKBKlWnpxcrA0osAahOWXgRQG5U1r9FDCQAAAFMIlAAAADCFu7xtkJoqeTx2VwFULrdbioiwuwoAQFUgUFax1FTpueeklBS7KwEqV2SkNH48oRIAfAGBsop5POfCZHDwuR4coDYq+J57PARKAPAFBEqbuN1SWJjdVQCVJyPD7goAAFWFQAkAFnC73Tp+/Lh3GwB8CYESACzgcDhUv359u8sAAFswbRAAAABMIVACgAWysrI0atQojRo1iqUXAfgcAiUAWCA3N1fTp0/X9OnTlZuba3c5AFClCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTWCkHACwQHBysffv2ebdrmtTMVHlyPHaXAVQqt9OtCFeE3WXUSgRKALCAn5+foqOj7S6jQlIzU/Xc588pxZNidylApYp0R2p8j/GEykpAoAQAH+fJ8SjFk6LggGC5nW67ywEqRcH33JPjIVBWAgIlAFggOztb48aNkyRNmjRJgYGBNldUfm6nW2FBYXaXAVSajNwMu0uotbgpBwAskJOTo5deekkvvfSScnJy7C4HAKoUgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAK81ACgAWCg4P13XffebcBwJcQKAHAAn5+fmrTpo3dZQCALRjyBgAAgCn0UAKABbKzszV58mRJ0l/+8pcaufQiAFQUgRIALJCTk6OJEydKkp544gkCJQCfwpA3AAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFKYNAgALuFwubd682bsNAL6EQAkAFvD391enTp3sLgMAbMGQNwAAAEyhhxIALJCdna1p06ZJkh555BFWygHgUwiUAGCBnJwcPfnkk5KkBx98kEAJwKcw5A0AAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFaYMAwAIul0vr1q3zbgOALyFQAoAF/P39FRsba3cZAGALhrwBAABgCj2UAGCBnJwc/fOf/5Qk3X///XI6nTZXBABVh0AJABbIzs7WQw89JElKTEwkUALwKQx5AwAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATGHaIACwQFBQkFauXOndBgBfQqAEAAsEBASod+/edpcBALZgyBsAAACm0EMJABbIycnRvHnzJEl33303K+UA8CkESgCwQHZ2toYNGyZJGjBgAIESgE9hyBsAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAK0wYBgAWCgoK0ePFi7zYA+BICJQBYICAgQAMGDLC7DACwBUPeAAAAMIUeSgCwQG5urpYuXSpJ6tu3rwICOL0C8B2c8QDAAllZWRo4cKAk6ezZswRKAD6FIW8AAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApzGsBABYIDAzU7NmzvdsA4EsIlABgAafTqcTERLvLAABbMOQNAAAAU+ihBAAL5Obmas2aNZKkW2+9lZVyAPgUzngAYIGsrCzddtttklh6EYDvYcgbAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCvNaAIAFAgMD9frrr3u3AcCXECgBwAJOp1OjRo2yuwwAsAVD3gAAADCFHkoAsEBeXp6++OILSdL1118vf39/mysCgKpDoAQAC2RmZiouLk7SuaUXQ0JCbK4IAKoOQ94AAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTmDYIACzgdDo1ZcoU7zYA+BICJQBYIDAwUE888YTdZQCALRjyBgAAgCn0UAKABfLy8vTNN99IkmJiYlh6EYBPIVACgAUyMzPVuXNnSSy9CMD3MOQNAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhWmDAMACTqdTSUlJ3m0A8CUESgCwQGBgoCZMmGB3GQBgC4a8AQAAYAo9lABggfz8fO3atUuS1Lp1a/n58fc6AN9BoAQAC2RkZKht27aSWHoRgO/hT2gAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApTBsEABZwOp0aO3asdxsAfAmBEgAsEBgYqL/97W92lwEAtmDIGwAAAKbQQwkAFsjPz9fBgwclSc2bN2fpRQA+hUAJABbIyMhQixYtJLH0IgDfw5/QAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAU5g2CAAsEBAQoAcffNC7DQC+hLMeAFggKChIb7zxht1lAIAtGPIGAACAKfRQAoAFDMNQSkqKJCkyMlIOh8PmigCg6hAoAcACHo9HDRo0kMTSiwB8D0PeAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAU5g2CAAsEBAQoISEBO82APgSznoAYIGgoCDNmTPH7jIAwBYMeQMAAMAUeigBwAKGYcjj8UiS3G43Sy8C8Cn0UAKABTwej0JDQxUaGuoNlgDgKwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAU5iHEgAs4O/vr/79+3u3AcCXECgBwAIul0tLliyxuwwAsAVD3gAAADCFQAkAAABTCJQAYIH09HQ5HA45HA6lp6fbXQ4AVCkCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBRWygEAC/j7+ys+Pt67DQC+hEAJABZwuVxatWqV3WUAgC0Y8gYAAIApBEoAAACYQqAEAAukp6crJCREISEhLL0IwOdwDSUAWMTj8dhdAgDYgh5KAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYwl3eAGABPz8/9ezZ07sNAL6EQAkAFggODtb69evtLgMAbMGf0QAAADCFQAkAAABTCJQAYIH09HTVr19f9evXZ+lFAD6HayhtwgptqM189fudkpJidwkAYAsCZRVzu6XISCklRcrIsLsaoPJERp77vgMAaj8CZRWLiJDGj/fdHhz4Drf73PcdAFD7EShtEBHBL1oAAFB7cFMOAAAATCFQAgAAwBSGvAHAAn5+furYsaN3GwB8CYESACwQHBys5ORku8sAAFvwZzQAAABMIVACAADAFAIlAFjA4/EoOjpa0dHR8jDRLAAfwzWUAGABwzB04MAB7zYA+BJ6KAEAAGAKgRIAAACmECgBAABgCtdQAgAkSZ4cbiZC7cX3u3IRKAHAx7mdbkW6I5XiSVFGbobd5QCVJtIdKbfTbXcZtRKBEgAs4HA4dOWVV3q3a5IIV4TG9xhPDw5qPbfTrQhXhN1l1EoESgCwgNvt1vfff293GRUW4YrgFy2ACuOmHAAAAJhCoAQAAIApBEoAsIDH41GbNm3Upk0bll4E4HO4hhIALGAYhnbu3OndBgBfQg8lAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABM4S5vALCAw+FQVFSUdxsAfAmBEgAs4Ha7tX//frvLAABbMOQNAAAAUwiUAAAAMIVACQAWyMjIUKdOndSpUydlZGTYXQ4AVCmuoQQAC+Tn52vLli3ebQDwJfRQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFO7yBgCLREZG2l0CANiCQAkAFggJCdGJEyfsLgMAbMGQNwAAAEwhUAIAAMAUAiUAWCAjI0OxsbGKjY1l6UUAPodrKAHAAvn5+dqwYYN3GwB8CT2UAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhbu8AcAibrfb7hIAwBYESgCwQEhIiNLT0+0uAwBswZA3AAAATCFQAgAAwBQCJQBYIDMzU71791bv3r2VmZlpdzkAUKW4hhIALJCXl6ePPvrIuw0AvoQeSgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmGLbXd6GYUiS0tLS7CoBACxz/io5aWlp3OkNoFYoyGkFua0ktgXKM2fOSJKaNWtmVwkAUCkaN25sdwkAYKkzZ84oIiKixMcdxoUiZyXJz8/XkSNHFBYWJofDYUcJAAAAKIVhGDpz5owaN24sP7+Sr5S0LVACAACgduCmHAAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKALbYtGmT+vbtq+bNmysoKEgXX3yxrr32Wo0ZM6ZQu+nTp2vOnDllft3169fL4XBo/fr1pbabM2eOHA6H9ycgIECNGjXS4MGD9eOPP1bgHZ0zefJkLVu2rMJ12WXcuHHq0KGD6tatK5fLpUsuuUT333+/Dhw4YHdpAGoAAiWAKrdq1Sp169ZNaWlpmjJlitauXatp06bpuuuu06JFiwq1LW+gLK/Zs2dr48aN+ve//62HHnpIK1asUPfu3XXq1KkKvV5JgTImJkYbN25UTEyMyYorx+nTpzVkyBC98847Wr16tcaOHauVK1eqS5cuOnnypN3lAajmbJvYHIDvmjJlilq0aKE1a9YoIOD/TkODBw/WlClTqrSWtm3bqmPHjpKk2NhY5eXlKSkpScuWLdOwYcMsO054eLi6du1q2etJ0p49e9SqVStLXuuNN94o9N+xsbFq0aKF4uPjtXz5cg0fPtyS4wConeihBFDlTp48qcjIyEJhssD5E+dGR0fr+++/14YNG7xD09HR0d7Hd+/erV69esntdisyMlIPPPCAdxWuiioIl8eOHfPuy8zM1JgxY3T11VcrIiJCdevW1bXXXqvly5cXeq7D4VB6erreeecdb72xsbGSSh7yXrFiha699lq53W6FhYXp5ptv1saNG8tU6xVXXKFrrrlGL730kg4dOlTxN12C+vXrS1Kx/58A4HwESgBV7tprr9WmTZv08MMPa9OmTcrJySm23dKlS3XJJZeoQ4cO2rhxozZu3KilS5dKOhf4evbsqe+++07Tp0/X3LlzdfbsWT300EOmatu3b58kqWXLlt59WVlZ+u233zR27FgtW7ZMCxYsUPfu3dWvXz+9++673nYbN25UcHCw4uPjvfVOnz69xGPNnz9fffr0UXh4uBYsWKCZM2fq1KlTio2N1ZdffnnBWj/55BN16NBBzz//vJo3b66ePXvqH//4h1JSUir8/nNzc5WRkaGtW7fq0UcfVcuWLdWvX78Kvx4AH2EAQBVLSUkxunfvbkgyJBlOp9Po1q2b8fzzzxtnzpwp1LZNmzZGz549i7zGU089ZTgcDmPbtm2F9t98882GJGPdunWl1jB79mxDkvH1118bOTk5xpkzZ4zVq1cbDRs2NHr06GHk5OSU+Nzc3FwjJyfHGDFihNGhQ4dCj4WEhBgJCQlFnrNu3bpCdeXl5RmNGzc22rVrZ+Tl5XnbnTlzxmjQoIHRrVu3Uus/X3Z2trFy5UrjnnvuMcLCwoyAgAAjPj7emDt3bpHPszRHjx71/j+RZHTp0sU4fPhwmZ8PwHfRQwmgytWrV09ffPGFkpOT9cILL6hPnz764Ycf9Mwzz6hdu3Zl6mFbt26d2rRpo/bt2xfaP3To0HLV0rVrVzmdToWFhalXr16qU6eOli9fXmSYd8mSJbruuusUGhqqgIAAOZ1OzZw5U7t27SrX8Qrs2bNHR44c0b333ltomD80NFR33XWXvv76a3k8njK9ltPpVO/evTV37lwdP35cCxcuVEhIiO6//341aNBAS5YsKdPrREZGKjk5WV9++aVmzJih3377TXFxcTp69GiF3iMA30GgBGCbjh076qmnntKSJUt05MgRPfbYY9q/f3+Zbsw5efKkGjZsWGR/cftK8+677yo5OVmfffaZRo4cqV27dmnIkCGF2nzwwQcaOHCgmjRpon/961/auHGjkpOTNXz4cGVmZpbreOfXL0mNGjUq8ljjxo2Vn59foTvNMzIylJqaqtTUVOXk5CgkJEQul6tMzw0ICFDHjh113XXX6b777tNnn32mn3/+WS+88EK56wDgW7jSGkC14HQ6lZSUpL///e/67rvvLti+Xr16+vXXX4vsL25faVq3bu29EScuLk55eXl6++239d5776l///6SpH/9619q0aKFFi1aJIfD4X1uVlZWuY71+/olFdv7d+TIEfn5+alOnTpleq0zZ85o+fLlWrhwodauXaugoCD16dNHy5cv1y233FLhm2qaNm2qxo0b64cffqjQ8wH4DnooAVS5koZQC4aPGzdu7N0XFBSkjIyMIm3j4uL0/fffa/v27YX2z58/31RtU6ZMUZ06dfTss88qPz9f0rm7twMDAwuFyV9//bXIXd6l1ft7rVq1UpMmTTR//nwZhuHdn56ervfff99753dpFi1apH79+qlBgwYaMWKE/P39vcPe//rXvxQfH2/qDu2ffvpJhw4d0mWXXVbh1wDgGwiUAKrcrbfeqvj4eL355ptat26dPv30U02dOlX9+vVTaGioHnnkEW/bdu3aafv27Vq0aJGSk5P17bffSpIeffRRRUZGqnfv3pozZ44+/vhj3XPPPdq9e7ep2urUqaNnnnlGu3bt8obT2267TXv27NGDDz6ozz77TO+88466d+9e7HB1u3bttH79en344YfasmWL9uzZU+xx/Pz8NGXKFG3btk233XabVqxYoSVLliguLk6nT58u0zDz0KFDdfr0ab322ms6duyYli9frkGDBik4OLhc73nHjh268cYb9eabb2rNmjX65JNP9PLLLysuLk716tXT2LFjy/V6AHyQ3XcFAfA9ixYtMoYOHWpcfvnlRmhoqOF0Oo3mzZsb9957r7Fz585Cbffv32/ccsstRlhYmCHJiIqK8j62c+dO4+abbzZcLpdRt25dY8SIEcby5cvLdZd3cnJykccyMjKM5s2bG5dffrmRm5trGIZhvPDCC0Z0dLQRFBRktG7d2pgxY4aRlJRk/P40um3bNuO6664z3G63Icl7h/rv7/IusGzZMqNLly6Gy+UyQkJCjBtvvNH46quvyvQ5HjlypEztLuTXX3817rnnHuPSSy813G63ERgYaFxyySXGAw88YBw8eNCSYwCo3RyGcd5YCwAAAFBODHkDAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMCU/wfehfxpQDKz0wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Event 3: Swallow\n", "Start time: 84.240 sec, End time: 85.434 sec\n", "left std ratio: 1.512, right std ratio: 5.680\n", "LM_max_index: 84.914, LL_max_index: 85.347, left delta t: -0.434\n", "RM_max_index: 85.064, RL_max_index: 85.357, right delta t: -0.293\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRtklEQVR4nO3dd3xUVf7/8fckmWQyk0IJLSChiEpVIkXKkkRXQVBRpCiKBHCRxcIq2FeBdUHlK/bFdS2gLiKgAooo7leDqAsSFbCAoEhRehASSC/n9we/zJcxhST3JpNkXs/Hg4fXO2fmfmYyM3nnnHvPcRhjjAAAAIAqCvJ3AQAAAKjbCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUCFhr1qyRw+HQjBkz/F1KnVDW69WmTRu1adPGLzWVJTk5WQ6HQ7t27fJ3KbXWggUL5HA4tGDBgmo/Fp81/yjrdU9MTJTD4fBPUai3CJSotF27dsnhcMjhcKhly5YqLCwstd23337rbXfOOefUcJW1R1ZWlp566iklJSWpSZMmcjqdatSokfr3769HHnlEhw8f9neJdU5NhiG7ffzxx97PxcqVK/1dTsDZvXu3Jk2apPPPP19NmjRRWFiY4uLiNGTIEH300UeVfrw9e/Zo8uTJ6tChg1wulyIiItSuXTsNGTJEjz76qDIzM6vhWQC1T4i/C0DdFRISon379mn16tUaPHhwidtfeuklhYSEqKCgwA/V1Q6bN2/W0KFDtXv3bsXFxemKK65Qs2bNlJGRofXr1+vee+/Vww8/rH379snj8fi73Cqpyi/h6vbwww/rnnvuUcuWLf1dSgkvv/yyJMnhcOill17SZZdd5ueKql+vXr20detWxcTE+LsU/fjjj1q8eLH69OmjCy64QFFRUdq7d69WrFihVatWadasWbrvvvsq9FibN29WYmKijh07pn79+unSSy9VaGiodu7cqS+//FKrVq3S1VdfrTPPPLOanxXgfwRKVFnfvn21efNmvfzyyyUCZV5enhYuXKjBgwfrnXfe8VOF/vXrr7/qkksuUVpamubOnaspU6YoODjYp83GjRt1yy23KD8/309VWte+fXt/l1BCixYt1KJFC3+XUcKxY8f09ttvq1evXnK5XFq5cqUOHjyoZs2a+bu0auV2u2vNKMWAAQN05MgRBQX5DtDt27dP8fHxmjFjhiZPnqwGDRqc9rHuuOMOHTt2TK+++qrGjBlT4vZ169bVihAN1ASGvFFl4eHhGjVqlN59912lpaX53PbOO+8oLS1N48aNK/W+5Z3jNmPGDDkcDq1Zs8Zn/1tvvaWEhAQ1bdpULpdLZ5xxhgYNGqTly5eXeIxvvvlG119/vVq1aqWwsDC1aNFCgwYN0rvvvluh53bo0CHdfvvtOvPMMxUWFqaYmBhdffXV+u677yp0f0m6//77dejQId1333264447SoRJSerevbs++eQTRUVF+exfuXKlkpKSFB0drfDwcJ133nl68sknyzy9oKLti09XSE5O1g8//KBhw4YpJibG52eRnZ2te+65R2eccYZcLpe6dOmiF154ocznWdo5lKf+DJcsWaL4+HiFh4erRYsWuu2225Sdne3TPi8vT88884wGDhyoM844Q2FhYWratKmGDRumjRs3+rRNTk72vq/GjRvnHT4+9Zyw8t5fr7zyii644AJFREQoIiJCF1xwgV555ZUS7U49/+zrr7/WwIEDFRkZqejoaF111VVVOj/z9ddfV3Z2tsaMGaMbbrhBBQUFevXVV0tte+pzmDdvnjp27CiXy6W4uDjNnDlTRUVFPu3T09P16KOPKiEhQbGxsQoNDVVsbKxuuOEG7dix47S1HT9+XJGRkercuXOptxcWFio2NlZNmjRRXl6eJCknJ0dz587Vueeeq+joaEVERKh9+/a69tpr9e2333rvW9a5fD/++KPGjRuntm3byuVyKSYmRvHx8Zo6depp662q0NDQEmFSkmJjY9W3b1/l5+dr9+7dFXqsdevWqUGDBqWGSUnq06ePN5gWFRWpUaNGOu+883zaHD58WEFBQXI4HPrss898bhs1apQcDocOHjwoqXKfk6ooKCjQE088oXPPPVfh4eGKjo5WUlKS3nvvPZ92mzZtksPh0F/+8hef/UuXLpXD4ZDH4/G+R4o1b95cHTt2tFwjajEDVNLOnTuNJDNw4ECzfv16I8k8+eSTPm0uvfRS07RpU5Ofn28kmbPPPtvn9rFjxxpJZufOnSUef/r06UaSSUlJ8e6bN2+ekWRatGhhJk6caO69916TnJxsOnXqZMaOHetz/7ffftuEhYUZp9Nphg0bZu69914zYcIE06VLFzN06FBvu5SUFCPJTJ8+3ef+P/30k2nVqpVxOBxm4MCBZurUqWbMmDHG7XYbj8dj1q9ff9rXKDMz04SGhprw8HBz7Nix07Y/1ZNPPmkkmUaNGplJkyaZqVOnmrPOOstIMsOGDTNFRUVVbl/8s+vXr5+Jjo42ffv2NXfccYdJTk42e/fuNYWFheaPf/yjkWS6du1q7rrrLjNhwgTj8XjMZZddVurrFRcXZ+Li4nz2Ff8Mhw8fbjwejxk9erS5/fbbTceOHY0kM3r0aJ/2+/fvN0FBQSYhIcFMnDjR3H333WbEiBEmLCzMuFwus2HDBm/bZcuWmaFDhxpJZujQoWb69Onef8XKen/95S9/MZJMy5YtzW233WamTJliWrVqZSSZ22+/3adt8ftjyJAhxu12m8GDB5upU6eaCy+80Egy7du3N9nZ2RX8qZ4UHx9vnE6nOXz4sElPTzfh4eElPhu/fw7Dhw83MTExJjk52dx2222mdevWRpK57777fNqvW7fOhIaGmoEDB5rJkyebO++801x++eUmODjYNGrUyOzatcun/fz5840kM3/+fO++P/3pT0aS+fzzz0vUs2LFCiPJTJ061btv5MiRRpLp1q2bmTJlirnrrrvMNddcY5o1a+bzuKV91vbu3WsaNGhgnE6nufLKK83dd99tbr75ZnPJJZcYp9NZiVfVHmlpaSY2Nta43W6TkZHhc1vx+/n37/2WLVuakJAQs3///god48orrzQOh8OkpaV59y1ZssRIMpLM3/72N5/2zZo1Mx07dvT+f2U+J8aU/R2XkJBgfv/rv6ioyAwbNsxIMmeddZaZOnWqmTRpkmnUqJGRZJ566imfto0aNTLdunXzeYzJkyd7n8vatWu9+7ds2WIkmT//+c8Vep1QNxEoUWmnBkpjjOncubPPF8uvv/5qgoODvb947AiU8fHxJjQ01Bw6dKhE+1O/nA8ePGgiIiKMx+MxX3/9dYm2v/zyi3e7rC/bvn37mpCQEPPhhx/67N+2bZuJjIw0Xbt2LfG4v7dmzRojyfTv3/+0bU+1Y8cOExISYpo2bWr27Nnj3Z+bm+v9JfDaa69VuX3xz06SeeCBB0ocvzhkDBo0yBQUFHj3f/PNNyY0NLTSgTI6Otr88MMP3v1ZWVnmrLPOMg6Hw+zdu9e7Pycnx/z6668l6vnuu+9MRESE+eMf/1hqnaeGllOV9v5au3atkWQ6duzoE/KPHTtmzjnnHCPJfPrpp979xe8PSeaNN97wefwxY8YYSWbRokWlHr80GzduNJLMFVdc4d137bXXGknms88+K/M5tG3b1uzbt8+7//Dhw6ZBgwYmMjLS5Obm+jyPI0eOlHicjz/+2AQFBZkbb7zRZ39pr2FqaqqRZMaNG1fica644gojyWzdutV7PIfDYXr06OHzXjHGmIKCAnP06FHv/5f2WXv66adLBJVTn2N127lzp5k+fbr561//asaPH29iYmJMSEiIefHFF0u0LStQFv+B0r59ezN37lyzYcOGcv/IeOqpp4wk89Zbb3n3/fnPfzYNGjQw8fHxJikpybv/+++/N5LM5MmTvfsq+zmpTKB89dVXjSSTkJDg87765ZdfTNOmTY3T6TQ///yzd/9VV11lHA6Hz8+qY8eOJjEx0QQHB5uZM2d69//jH/8wksySJUvKfG1Q9zHkDcvGjRunb775Rl999ZWkk1fgFhYWavz48bYex+l0yul0ltjfuHFj7/Yrr7yiEydOaOrUqerevXuJtq1atSr3GBs3btR///tfjR07VhdffLHPbWeddZb+9Kc/6dtvvz3t0PeBAwcqdLzfW7hwoQoKCjR16lSdccYZ3v2hoaF65JFHJMnnyubKti/WvHlz/fWvfy2xv3j4ddasWT5D9F27di1zWK88U6ZM0dlnn+39//DwcF177bUyxnjfL5IUFhZW6gU0nTt3VlJSktauXWv5PNPi12HGjBmKjo727o+Ojtb06dN92pxqwIABGjVqlM++4vd2ampqhY//0ksvSZLP63jDDTf43FaaBx54wOd80JiYGA0dOlTHjx/Xtm3bfJ5Ho0aNStw/KSlJnTt31v/+7/+etsYePXooPj5eS5Ys0fHjx737Dxw4oFWrVql///7ecyEdDoeMMQoLCytxOkdwcHCFzkGUTr4nfq8mzjvctWuXZs6cqb///e96+eWXlZOTo/nz52vChAkl2t5yyy3aunWrbrnlFp/9s2fP1g033KCdO3dq6tSp6tWrlyIiInT++efr73//u44dO+bTPjExUdLJK/2LpaSkKCEhQX/84x+1bt065eTkePefeh+pej8nxe/9OXPmKDQ01Lu/VatWuv3225Wfn6+FCxf6PBdjjPfUpIMHD2rr1q0aOnSozj///BLPUZISEhKqVBvqBgIlLBszZoycTqf36tUFCxaod+/e6tSpk23HGDlypDIzM9WlSxdNmzZNK1euLPFlLUkbNmyQJF1yySVVOs769eslnfwFOmPGjBL/fvjhB0ny/tduxedBnfpLpNgFF1yg8PBwbdq0qcrti5177rk+vzSKbd68WW63W/Hx8SVu+8Mf/lCxJ3GK0h6nOGT//ue3adMmjR49Wq1bt1ZoaKj3vMh3331XeXl5Jc7TrazyXqvifaW9VpV5DmXJzc3VwoUL1aBBA11++eXe/RdffLFatGihJUuW6MSJE6XetzLHX7Nmja688kq1aNFCTqfT+xp+++232rdvX4Vqvemmm5SZmalFixZ59y1YsEAFBQW68cYbvfuioqI0aNAgff7554qPj9fs2bP16aefljh3riyXXXaZ3G63br75Zo0cOVIvv/yytm/fXqH7Sid/Vr//fFZmGqniQJSXl6ft27dr0qRJuuGGG3TbbbeVaBsTE6NzzjmnRNANDw/XK6+8ot27d+v555/XhAkT1KlTJ3399dd64IEH1LVrV/3888/e9l27dlVMTIw3YB04cEA//PCDkpKSlJSUpJycHK1bt07SyRDmcDhKvF+r63OyceNGhYeHq1evXqW+VsXHLpaUlOSt89T/Fj+X9evXKycnR8YYffLJJ+rcubOaNm1apdpQN3CVNyxr2rSpBg8erEWLFumKK67QTz/9pGnTptl6jLvuukuNGzfWP//5Tz3++OOaO3euQkJCNHjwYD355JNq27atpP/7BVvV6WJ+++03SdJ7771X4kT0U51ubrnmzZtLkvbu3Vup42dkZEhSmVf9Nm3a1OcxK9u+WFnt09PTfXo6K3Kf8pzaE1gsJOTk186pFwz997//1YUXXijp5B8DHTp0UEREhBwOh5YvX67NmzcrNze30sc/VUZGhoKCgtSkSZMStzVr1kxBQUFKT0+v8nMoz7Jly3T06FH96U9/UlhYmHd/cHCwrrvuOj322GNavHhxqb1jFT3+0qVLNWrUKEVERGjgwIFq06aN3G63d77Oil5oMnr0aE2dOlUvvviiJk6cKOnkVEfR0dEaMWKET9s333xTs2fP1qJFi3T//fdLkiIjIzV+/HjNnj1bbre7zOO0bdtW69at08yZM/X+++9r6dKlkqSzzz5bDz30UIlj/d6mTZs0c+ZMn30JCQlKTk6u0PMs5nQ61aFDB/3P//yPsrKy9Mwzz+jSSy/VpZdeWuHHaNWqlSZOnOh9vXbs2KHx48dr7dq1uv3227VixQpJJ3t1ExIS9NZbb+ngwYM+Iaxdu3YKCQlRSkqKEhMTvSHs1PdrdX5OMjIyyvzsF3+fnfr56NKli5o0aeITKBs3bqxu3brpwIEDevTRR/Xf//5XTZo00eHDh0v08qP+IVDCFuPHj9eKFSs0YcIE77BmeYqvsixtjsrSfqk7HA7deOONuvHGG3XkyBF9+umnWrRokZYsWaIff/xR3377rc8w2969e6u0ekvx1dbPPPNMieGtyujZs6dCQ0P15ZdfKiMjo8RV3Kc7/sGDBxUXF1fi9kOHDvk8VmXbFytrlYzo6GgdOnSo1NuKrzStDrNmzVJubq4+++wz9evXz+e29evXa/PmzZaPERUVpaKiIh0+fLhET8mhQ4dUVFRU4Z9TZRUPab/wwgtlXjH/0ksvlRooK2rGjBlyuVz66quv1KFDB5/b3njjjQo/TkREhEaPHq1//etf+uabb/Tbb7/pxx9/1OTJk0sERI/Ho1mzZmnWrFnauXOnUlJS9M9//lNPPfWUsrOz9fzzz5d7rG7duumtt95Sfn6+vvrqK73//vt6+umnNWrUKMXGxpZ4L5wqOTm50uHxdC655BLNmzdPa9asqVSg/L327dtrwYIFateunc/Qr3QyPL711ltas2aN1qxZo5iYGHXt2lUOh0M9e/ZUSkqKRowYobS0tBLfo9X5OYmKiirzM168/9TPR3E4fvPNN3XgwAGtWbNGCQkJcjgc6t+/v5xOp1JSUryfteIeTdRfDHnDFoMHD1bz5s21d+9eXX311af9xdywYUNJpffgnW76i8aNG+vKK6/U4sWLdeGFF2rr1q366aefJMk7XPPhhx9W5Wmod+/ekuQddqoqt9uta665RtnZ2Zo7d265bQsKCrxTwBSf9/n7KZOkk8P52dnZPtOOVLb96Zx77rnKysrS119/XeK2Tz/9tMKPU1k7duxQo0aNSvySLKuW4nP2KtpDKJX/Wn3yySeSVKnXqqJ27dqljz76SM2aNdOECRNK/de6dWutW7dOW7durfJxduzYoY4dO5YIk/v27avQtEGnuummmyRJL774ojcMnzrcXZq2bdtq/Pjx+uSTTxQREVGp+WedTqcuuOACzZw5U08//bSMMX5ZRaj4tIDiHmArylqo4NTzKIt7I4v/wLvwwgv1xRdfeJ/774e7K/s5qYzu3bsrOzvbe9rQqcr6fBTXt3DhQm3fvt3be+rxeNSrVy/vcywOn6jfCJSwRUhIiN555x0tW7ZMs2bNOm37Hj16SCp5EcSbb77p/fI61erVq0v0Zubn53uHqItP7B87dqwiIiI0d+7cUs+HO90QdK9evdS7d28tWrRIixcvLnF7UVFRqfWVZtasWWrSpIlmzZqlp59+usS8gdLJ+TITExO9Q9ejR49WSEiIHn/8cZ9z3vLz83XPPfdIkk+vTGXbn07xBSP333+/T1j79ttv9dprr1X4cSorLi5OR48e1ffff+/dV1hYqGnTppW6NGXxxSe//vprhY8xduxYSdLMmTO9r7d0cqiveOi0uI2d5s+fL2OMJk2apBdffLHUf8XzLpZ3cc7pxMXF6aeffvLpZcrJydGf//znSq9WFR8fr/PPP1///ve/9dZbb+n8888vcZHb4cOHSw0fR48eVW5ubqkX25wqNTW11N7w4vpPd/+q2rBhg/fCl1Pt3r1bDz/8sCSV6J1MS0vTDz/8UOL8xL/97W/65ZdfSjyWMcb7WP379/e5rfhcwmXLlunHH3/06blLSkpSfn6+nnjiiVJDWGU/J5VR/N6/9957fS7s2bt3rx5//HGFhITouuuu87lPce2PPvqoz/8Xb6empiolJUVdu3b1uXgS9RND3rBNz5491bNnzwq1vfLKK9W2bVstWLBAv/zyi7p3766tW7fq448/1uDBg7Vq1Sqf9qNGjZLb7Vb//v0VFxen/Px8/ec//9GWLVs0atQotW7dWtLJcwZfffVVXXPNNerVq5euuOIKnX322UpLS9MXX3yhNm3alDoR+qkWLVqkpKQkXXPNNXryySd1/vnny+Vyac+ePVq3bp0OHz5c6i+k32vVqpU+/PBDXXnllZoyZYqeeOIJXXTRRd6lFzds2KDU1FRFRUV5r15v3769Hn30UU2dOlXdunXTyJEj5fF4tHLlSv3www8aOnSorr/+eu8xKtv+dMaOHavXX39dH3zwgbp3765LL71Uv/32mxYtWqRLLrmk2nqNbr31Vn344Yfq37+/Ro4cKZfLpTVr1mjv3r1KTEws0avYp08fhYeH68knn1RGRob3PLPiEF2aAQMG6NZbb9UzzzyjLl266Oqrr5YxRm+//bZ++eUX3XbbbRowYICtz6uoqMi77nh5wf66667TnXfeqddee00PP/xwqbMZnM6tt96qW2+9Vd27d9fw4cNVUFCg//znPzLG6Nxzz630cOhNN93kPSewtN7JvXv3qnfv3urcubPi4+PVsmVLHTlyRCtWrFB+fr7uuuuuch9/4cKFmjdvnhITE3XmmWcqKipKW7Zs0apVqxQTE2P7LBHFii8eSkhIUOvWrRUSEqIdO3Zo1apVysvL0+23314iBD777LOaOXOmpk+f7jM5++OPP64ZM2aoR48eOv/889WoUSMdOXJEH3/8sX788Uc1bty41BGKxMRELVmyRJJvCOvbt6/CwsJ0+PBhnXvuuSVCWGU/J5UxZswYvf3221qxYoW6deumyy67TJmZmVqyZImOHDmiuXPnql27dj736dSpk5o1a+Zd7enUCzGTkpK8V7pXxx9qqIX8NV8R6q7fz0N5OiplHkpjjPn555/N0KFDTWRkpPF4POaiiy4yqampZU5sfsUVV5i4uDjjcrlM48aNTe/evc3zzz9v8vPzSzz2xo0bzciRI02zZs2M0+k0LVq0MJdeeqlZuXKlt01Zc7QZY8xvv/1m/vrXv5ouXbqY8PBwExERYTp06GBGjx5t3n777Qo972KZmZnmySefNAkJCd657ho0aGD69Olj/v73v/vMo1lsxYoVJiEhwURGRpqwsDDTtWtXM3fu3FKfa2XaF//sfj8Z/O/rveuuu0zLli1NWFiY6dSpk3n++efLfL3Km4fy1J9hsbLmkHzzzTdNfHy8cbvdJiYmxowcOdLs2LGjzDlL33vvPdOzZ08THh7unS+yWHnznL788sumZ8+exu12G7fbbXr27GlefvnlEu3Ke39U5HU0xpgPPvjASDIXXXRRue2MMebqq6/2maOwsnO1FhUVmX/+85+mc+fOxuVymebNm5sJEyaYgwcPljrv4Onm8jx+/LhxOp3G7Xab9PT0ErcfPXrUzJgxwwwYMMC0aNHChIaGmtjYWDNo0CCzevVqn7alvZbr1683N910k+nSpYtp0KCBCQ8PNx06dDC33Xabz5yqdnv33XfNNddcY9q3b288Ho9xOp2mZcuW5qqrrjKrVq0q9T5lzUO5du1ac88995g+ffqY2NhY43Q6TUREhOnWrZuZNm2az/yhp3ruueeMJNOsWbMStw0YMMBIMlOmTCn1vpX5nFRmHkpjjMnPzzePPfaY6dq1qwkLCzORkZEmISHBrFixotRajDFm1KhRRpIZNWqUz/7s7GwTFhZmJJlly5aVeX/UHw5jjKmR5AoAqDM2bNig3r17a9y4cd4pwQCgLJxDCQAo4bHHHpMkTZo0yc+VAKgLOIcSACBJ2rNnj15//XV9//33Wrp0qQYNGlTqRNcA8HsMeQMAJJ2cUikpKUkRERG68MIL9fzzz3sntQaA8hAoAQAAYAnnUAIAAMASv51DWVRUpH379ikyMrLMZeAAAADgP8YYHT9+XLGxsd5lk0vjt0C5b9++MheiBwAAQO3xyy+/qFWrVmXe7rdAGRkZKelkgadb9xkAarvMzEzFxsZKOvkHc1lrOQNAXZKRkaEzzjjDm9vK4rdAWTzMHRUVRaAEUOcFBwd7t6OiogiUAOqV052eyEU5AAAAsIRACQAAAEsIlAAAALCkVi+9WFRUpLy8PH+XUS84nU6fc7wAAADsUmsDZV5ennbu3KmioiJ/l1JvNGjQQM2bN2feTwAAYKtaGSiNMdq/f7+Cg4N1xhlnlDuRJk7PGKOsrCwdOnRIktSiRQs/VwTUP8HBwRo8eLB3GwACSa0MlAUFBcrKylJsbKzcbre/y6kXwsPDJUmHDh1S06ZN+YUH2Mzlcum9997zdxkA4Be1suuvsLBQkhQaGurnSuqX4nCen5/v50oAAEB9UisDZTHO9bMXrycAAKgOtTpQAkBdkZmZKY/HI4/Ho8zMTH+XAwA1qlaeQ1mW9HQpK6vmjud2S9HRNXc8AHVbVk1+QQFALVJnAmV6uvTQQ1JaWs0dMyZGeuCBmgmVxhjddNNNevPNN3X06FFt3LhR5513XvUfGAAAwKI6Eyizsk6GyfDwkz2HNXW8rKyKB8rk5GQdO3ZMy5cvr/TxPvjgAy1YsEBr1qxRu3btFBMTI4fDoWXLlunKK6+s9OMBAADUlDoTKIu53VJkZM0cKzu7Zo4jSTt27FCLFi3Ut2/fmjsoAACADbgop4Zs2bJFgwcPVkREhJo1a6YxY8Yo7f+P3ycnJ+vWW2/Vnj175HA41KZNG7Vp00aSdNVVV3n3AQAA1EYEyhqwf/9+JSQk6LzzztOXX36pDz74QAcPHtTIkSMlSU899ZT+9re/qVWrVtq/f79SU1OVmpoqSZo/f753HwAAQG1U54a866LnnntO8fHxmj17tnffyy+/rDPOOEPbt2/XWWedpcjISAUHB6t58+Y+9y1efxtA7RYUFKSEhATvNgAEEgJlDfjqq6+UkpKiiIiIErft2LFDZ511lh+qAmCn8PBwrVmzxt9lAIBfEChrQFFRkS6//HI9+uijJW5r0aKFHyoCAACwD4GyBsTHx+utt95SmzZtFBJS8Zfc6XR61zUHAACorepcoKyphSiqepz09HRt2rTJZ99NN92kF154Qddee63uvPNOxcTE6KefftIbb7yhF154QcHBwaU+Vps2bfTRRx+pX79+CgsLU8OGDatWFIBql5mZ6Z2NYdeuXfJ4PP4tCABqUJ0JlG73yZVr0tJqbn7ImJjKT6K+Zs0ade/e3Wff2LFj9fnnn+vuu+/WwIEDlZubq7i4OA0aNKjck/fnzp2rO+64Qy+88IJatmypXbt2VeFZAKgpaTW5lBcA1CIOY4zxx4EzMjIUHR2t9PR0RUVF+dyWk5OjnTt3qm3btnK5XN79rOVtTVmvKwDrMjMzvRfenThxgh5KAPVCeXntVHWmh1I6Ge7qU8ADAACoD5gsDQAAAJYQKAEAAGAJgRIAAACW1KlzKAGgtgoKClKPHj282wAQSAiUAGCD8PBwpaam+rsMAPAL/owGAACAJQRKAAAAWFKnhrzTc9KVlV9zM5u7nW5Fu5j4EsDpZWVlqVOnTpKkLVu2yF3ZZbYAoA6rM4EyPSddD619SGlZNbe0WYw7Rg8MeMDWUOlwOLRs2TJdeeWVFWq/Zs0aJSUl6ejRo2rQoIFtdQCwlzFGu3fv9m4DQCCpM4EyKz9LaVlpCg8Jl9tZ/X/5Fx8vKz+rwoEyOTlZr7zyiiQpODhYsbGxGjJkiGbPnq2GDRtKkvbv3+/dtsuMGTO0fPlybdq0ydbHBQAAqIg6EyiLuZ1uRYZF1sixsguyK32fQYMGaf78+SooKNCWLVs0fvx4HTt2TIsWLZIkNW/e3O4yAQAA/IqLcmwWFham5s2bq1WrVrrkkks0atQoffjhh97bHQ6Hli9f7v3///73vzrvvPPkcrnUo0cPLV++XA6Ho0Rv41dffaUePXrI7Xarb9++2rZtmyRpwYIFmjlzpjZv3iyHwyGHw6EFCxbUwDMFAAA4iUBZjX7++Wd98MEHcjqdpd5+/PhxXX755eratau+/vprPfTQQ7r77rtLbXv//fdr7ty5+vLLLxUSEqLx48dLkkaNGqWpU6eqc+fO2r9/v/bv369Ro0ZV23MCAAD4vTo35F3brVy5UhERESosLFROTo4k6fHHHy+17cKFC+VwOPTCCy/I5XKpU6dO2rt3r/70pz+VaDtr1iwlJCRIku655x4NGTJEOTk5Cg8PV0REhEJCQhhOBwAAfkGgtFlSUpKee+45ZWVl6cUXX9T27dt16623ltp227Zt6tatm1wul3dfr169Sm3brVs373aLFi0kSYcOHVLr1q1trB5AVTkcDu+0QQ6Hw8/VAEDNYsjbZh6PR2eeeaa6deump59+Wrm5uZo5c2apbY0xJX7xlDXdyKnD5sX3KSoqsqlqAFa53W59//33+v7775mDEkDAIVBWs+nTp+uxxx7Tvn37Stx2zjnn6JtvvlFubq5335dfflnpY4SGhqqwsNBSnQAAAFVV5wJlVn6Wjucer/Z/dq3Ik5iYqM6dO2v27Nklbhs9erSKioo0ceJEbd26VatXr9Zjjz0mqXJDZm3atNHOnTu1adMmpaWl+QRUAACA6lZnzqF0O92KcccoLSutSvNDVkWMO8aWSdTvuOMOjRs3rsQV3FFRUXr33Xf15z//Weedd566du2qBx98UKNHj/Y5r/J0rr76ar399ttKSkrSsWPHNH/+fCUnJ1uuG0DFZWVlqWfPnpKk1NRUhr0BBBSH8dMaYRkZGYqOjlZ6erqioqJ8bsvJydHOnTvVtm1bn2AVCGt5L1y4UOPGjVN6errCw8NtfeyyXlcA1mVmZioiIkKSdOLECXk8Hj9XBADWlZfXTlVneiglKdoVXeMBr7q9+uqrateunVq2bKnNmzfr7rvv1siRI20PkwAAANWlTgXK+ujAgQN68MEHdeDAAbVo0UIjRozQrFmz/F0WAABAhREo/eyuu+7SXXfd5e8yAAAAqqzOXeUNAACA2qVWB0o/XS9UbzEROgAAqA61csjb6XTK4XDo8OHDatKkCcuYWWSMUV5eng4fPqygoCCFhob6uySg3nE4HIqLi/NuA0AgqZWBMjg4WK1atdKvv/6qXbt2+bucesPtdqt169YKCqrVHdNAneR2u/m+AhCwamWglKSIiAh16NBB+fn5/i6lXggODlZISAg9JwAAwHa1NlBKJ0NQcHCwv8sAAABAORj7BAAbZGdnq2fPnurZs6eys2tmeVgAqC1qdQ8lANQVRUVF+vLLL73bABBI6KEEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlXOUNADaJiYnxdwkA4BcESgCwgcfj0eHDh/1dBgD4BUPeAAAAsIRACQAAAEsIlABgg+zsbCUmJioxMZGlFwEEHM6hBAAbFBUV6ZNPPvFuA0AgoYcSAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWcJU3ANjE7Xb7uwQA8AsCJQDYwOPxKDMz099lAIBfMOQNAAAASwiUAAAAsIRACQA2yMnJ0ZAhQzRkyBDl5OT4uxwAqFGcQwkANigsLNSqVau82wAQSOihBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgA4/HI2OMv8sAAL+ghxIAAACWECgBAABgCYESAGyQk5OjESNGaMSIESy9CCDgOIyfTvrJyMhQdHS00tPTFRUV5Y8SAMA2mZmZioiIkCSdOHFCHo/HzxUBgHUVzWv0UAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh6UUAsIHb7daJEye82wAQSAiUAGADh8PB3JMAAhZD3gAAALCEQAkANsjNzVVycrKSk5OVm5vr73IAoEax9CIA2IClFwHURyy9CAAAgBpBoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCWslAMANnC73Tp06JB3GwACCYESAGzgcDjUpEkTf5cBAH7BkDcAAAAsIVACgA1yc3N188036+abb2bpRQABh6UXAcAGLL0IoD5i6UUAAADUCAIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYaUcALBBeHi4du7c6d0GgEBCoAQAGwQFBalNmzb+LgMA/IIhbwAAAFhCoAQAG+Tl5enOO+/UnXfeqby8PH+XAwA1iqUXAcAGLL0IoD5i6UUAAADUCAIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYaUcALBBeHi4vvvuO+82AAQSAiUA2CAoKEidO3f2dxkA4BcMeQMAAMASeigBwAZ5eXmaPXu2JOm+++5TaGionysCgJrD0osAYAOWXgRQH7H0IgAAAGoEgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwDyUA2MDlcmnDhg3ebQAIJARKALBBcHCwevbs6e8yAMAvGPIGAACAJfRQAoAN8vLy9NRTT0mSpkyZwtKLAAIKSy8CgA1YehFAfcTSiwAAAKgRBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCPJQAYAOXy6WUlBTvNgAEEgIlANggODhYiYmJ/i4DAPyCIW8AAABYQg8lANggPz9f//rXvyRJEydOlNPp9HNFAFBzWHoRAGzA0osA6iOWXgQAAECNIFACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMAS5qEEABuEhYVp5cqV3m0ACCQESgCwQUhIiIYMGeLvMgDALxjyBgAAgCX0UAKADfLz87Vw4UJJ0nXXXcfSiwACCksvAoANWHoRQH3E0osAAACoEQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwjyUAGCDsLAwLVmyxLsNAIGEQAkANggJCdGIESP8XQYA+AVD3gAAALCEHkoAsEFBQYGWLVsmSbrqqqsUEsLXK4DAwTceANggNzdXI0eOlHRy6UUCJYBAwpA3AAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEua1AAAbhIaGav78+d5tAAgkBEoAsIHT6VRycrK/ywAAv2DIGwAAAJbQQwkANigoKNDq1aslSQMHDmSlHAABhW88ALBBbm6uLrvsMkksvQgg8DDkDQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIR5LQDABqGhoXr22We92wAQSAiUAGADp9Opm2++2d9lAIBfMOQNAAAAS+ihBAAbFBYW6tNPP5Uk/eEPf1BwcLCfKwKAmkOgBAAb5OTkKCkpSdLJpRc9Ho+fKwKAmsOQNwAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBKmDQIAGzidTs2ZM8e7DQCBxGGMMf44cEZGhqKjo5Wenq6oqCh/lAAAAIByVDSvMeQNAAAASxjyBgAbFBYW6uuvv5YkxcfHs/QigIBCoAQAG+Tk5KhXr16SWHoRQOBhyBsAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJ0wYBgA2cTqemT5/u3QaAQMLSiwAAACgVSy8CAACgRjDkDQA2KCoq0tatWyVJHTt2VFAQf68DCBwESgCwQXZ2trp06SKJpRcBBB7+hAYAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCtEEAYAOn06lp06Z5twEgkLD0IgAAAErF0osAAACoEQx5A4ANioqKtGfPHklS69atWXoRQEAhUAKADbKzs9W2bVtJLL0IIPDwJzQAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASpg0CABuEhIRo8uTJ3m0ACCR86wGADcLCwvSPf/zD32UAgF8w5A0AAABL6KEEABsYY5SWliZJiomJkcPh8HNFAFBzCJQAYIOsrCw1bdpUEksvAgg8DHkDAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYdogALBBSEiIxo4d690GgEDCtx4A2CAsLEwLFizwdxkA4BcMeQMAAMASeigBwAbGGGVlZUmS3G43Sy8CCCj0UAKADbKyshQREaGIiAhvsASAQEGgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMI8lABgg+DgYA0fPty7DQCBpNKBsqioSD///LOOHDkih8OhRo0aqV27dgoKorMTQOByuVxaunSpv8sAAL+ocAr88ccfde211yoqKkpnn322+vbtqz59+ujss89WVFSUrrvuOm3fvr06awUAAEAtVKEeyo0bNyoxMVFhYWG6/vrr1a1bNzVq1EiS9Ntvv+mbb77RsmXL9N577+mTTz7RueeeW61FAwAAoPZwGGPM6RpdcsklysnJ0XvvvafIyMhS2xw/flyXXXaZXC6XVq9efdoDZ2RkKDo6Wunp6YqKiqp85QBQi2RmZioiIkKSdOLECXk8Hj9XBADWVTSvVaiHct26dVq6dGmZYVKSIiMjdc8992jkyJGVrxYAAAB1VoXOoQwJCVFubu5p2+Xl5SkkhAvHAQAAAkmFAmVSUpIeeOAB/frrr2W22bt3r6ZPn64LL7zQtuIAAABQ+1WoO3Hu3Lnq37+/zjzzTF144YXei3IcDoeOHDmib7/9Vh9//LEaN26sZcuWVXfNAAAAqEUqFCjbtm2rzZs3a86cOVq+fLlWr16t4mt5HA6HzjzzTE2ZMkXTpk1TTExMtRYMAACA2qVCV3n/Xk5Ojo4ePSpJatiwoVwuV6UPzFXeAOoTrvIGUB/ZepX377lcLrVo0aLKxQFAfRMcHKzBgwd7twEgkHBJNgDYwOVy6b333vN3GQDgFyzADQAAAEsIlAAAALCEQAkANsjMzJTH45HH41FmZqa/ywGAGsU5lABgk6ysLH+XAAB+QQ8lAAAALLEUKO+880499NBDdtUCAACAOqhKE5tL0r59+9S6dWuFhYXp4MGD3gl9K4qJzQHUJ0xsDqA+qmheq3IP5eLFixUTEyOn06m33nqrqg8DAACAOq7KgfL111/XiBEjdPnll2vRokV21gQAAIA6pEpXef/000/6+uuv9eSTT+ro0aMaNmyYDh8+rCZNmthdHwDUCUFBQUpISPBuA0AgqVKgXLRokVq1aqV+/fopPz9fERERWrJkiW6++Wa76wOAOiE8PFxr1qzxdxkA4BdV+jN60aJFGjlypCTJ6XTqqquu0uuvv25rYQAAAKgbKh0oN23apG3btumaa67x7hs5cqTWr1+v3bt321ocAAAAar9KB8pFixapXbt2Ov/88737/vjHP6px48ZcnAMgYGVmZqpJkyZq0qQJSy8CCDiVDpRvvPGGRo0a5bMvODhYw4YNY9gbQEBLS0tTWlqav8sAgBpXqUD5008/qV27drr++utL3JacnKzGjRvr4MGDthUHAACA2q/KK+VYxUo5AOoTVsoBUB9V+0o5AAAAgESgBAAAgEUESgAAAFhSpZVyAAC+goKC1KNHD+82AAQSAiUA2CA8PFypqan+LgMA/KJCf0avXbtWJ06cqO5aAAAAUAdVKFAmJSVpy5Yt1V0LAAAA6qAKBUo/TVUJAHVGVlaW2rRpozZt2igrK8vf5QBAjeIcSgCwgTFGu3fv9m4DQCCp8KWIDoejOusAAABAHVXhHsqkpKQKTYXhcDiUnp5uqSgAAADUHRUOlImJiWrSpEl11gIAAIA6qMKB8sEHH1SvXr2qsxYAAADUQSznAAAAAEv8fpV3ZmamgoODS+wPDg6Wy+XyaVeWoKAghYeHV6ltVlZWmVdkOhwOud3uKrXNzs5WUVFRmXV4PJ4qtc3JyVFhYaEtbd1ut/diq9zcXBUUFNjSNjw83Hu+bV5envLz821p63K5vO+VyrTNz89XXl5emW3DwsIUEhJS6bYFBQXKzc0ts21oaKicTmel2xYWFionJ6fMtk6nU6GhoZVuW1RUpOzsbFvahoSEKCwsTNLJK5rLmyanMm0r87mvbd8RDodDHTt2LPM58h3xf/iOOInviMq3rcvfEZVtW1u+I8p7LXyYCnA4HOaLL76oSNMKS09PN5LK/Dd48GCf9m63u8y2CQkJPm1jYmLKbNujRw+ftnFxcWW27dSpk0/bTp06ldk2Li7Op22PHj3KbBsTE+PTNiEhocy2brfbp+3gwYPLfd1ONXz48HLbnjhxwtt27Nix5bY9dOiQt+3kyZPLbbtz505v22nTppXb9rvvvvO2nT59erltN2zY4G07Z86cctumpKR42z777LPltl25cqW37fz588ttu2TJEm/bJUuWlNt2/vz53rYrV64st+2zzz7rbZuSklJu2zlz5njbbtiwody206dP97b97rvvym07bdo0b9udO3eW23by5MnetocOHSq37dixY71tT5w4UW7b4cOH+7yHy2vLd8TJf3xH/N8/viNO/uM74uQ/viNO/rPrOyI9Pd2Up0I9lOWlXgAAAAQ2x/9P+DUuIyND0dHR2rdvn6KiokrcTld16W0ZzmI4i+GsyrflO6JqbfmOOInviMq35TvipPrwHXH06FHFxsYqPT291Lzmrd/fgfJ0BQJAXZCVlaWePXtKklJTU31+MQBAXVXRvOb3i3IAoD4wxmjLli3ebQAIJEwbBAAAAEsIlAAAALCkykPe6enp2r59e6kn5Q4YMMBSUQAAAKg7Kh0oCwoKNGnSJL366qtlXiVU3tVDAAAAqF8qPeT9xBNP6N1339XLL78sY4yeffZZPf/88+rRo4c6dOig999/vzrqBAAAQC1V6UD52muv6f7779e1114rSerdu7duvPFGffHFF4qLi1NKSortRQJAbedwOBQXF6e4uDjvfIwAECgqHSh//vlnnXvuud6JZk+dMHXSpElauHChfdUBQB3hdru1a9cu7dq1izkoAQScSgdKj8ejvLw8ORwONWrUSLt37/beFh4eriNHjthaIAAAAGq3SgfKc845Rzt37pQk9e3bV48//rh+/fVXHTp0SHPmzNHZZ59te5EAAACovSp9lfeoUaO0fft2SdLMmTM1YMAAxcXFSTq5zufbb79tb4UAUAdkZ2d7p0xbu3atz1q/AFDfWV7L+5dfftHy5cvlcDh08cUXV7iHkrW8AdQnmZmZioiIkCSdOHFCHo/HzxUBgHXVtpb3nj171KJFCzmdTknSGWecoVtvvVXSyTkq9+zZo9atW1exbAAAANQ1lT6Hsm3bttq4cWOpt23evFlt27a1XBQAAADqjkoHyvJGyAsLC5l/DQAAIMBUOlBKKjU05ubm6v3331dMTIzlogAAAFB3VOgcypkzZ+pvf/ubpJNh8oILLiiz7Y033mhPZQAAAKgTKhQoe/XqpcmTJ8sYo3nz5mn48OFq1qyZT5uwsDB17dpVo0ePrpZCAaC2Y4QGQKCqUKC89NJLdemll0o6OTXGgw8+yMU3AHAKj8ejw4cP+7sMAPCLSk8bNH/+/OqoAwAAAHVUhQLl2rVrK/WgxatFAAAAoP6rUKBMTEz0XtltjClzaqDi2woLC+2rEADqgOzsbO+pQe+//z5LLwIIKBUKlCkpKdVdBwDUaUVFRfrkk0+82wAQSCoUKBMSEqq7DgAAANRRVZrYvNi2bdv0+eefKzMz0656AAAAUMdUKVC++uqratWqlTp16qQBAwZo27ZtkqSRI0fqhRdesLVAAAAA1G6VDpRLly5VcnKy4uPj9eyzz/qs7R0fH68lS5bYWiAAAABqt0oHyocffljjxo3TO++8o4kTJ/rc1rFjR23ZssW24gAAAFD7VTpQbt26Vddcc02ptzVq1EhHjhyxXBQA1EVut1tut9vfZQBAjav0Sjlut1vp6eml3rZ37141bNjQclEAUNd4PB4uUAQQsCrdQ9mvX78S504WW7BggRITE+2oCwAAAHVEpXsoH3zwQfXv31+9evXS6NGj5XA49Pbbb2v69Olau3atNmzYUB11AgAAoJaqdA9ljx499P777+vEiROaOnWqjDGaPXu2tm/frlWrVqlLly7VUScA1Go5OTkaMmSIhgwZopycHH+XAwA1ymFKG7uuoB07dujgwYOKiYnRWWedVan7ZmRkKDo6Wunp6YqKiqpqCQBQK2RmZioiIkKSdOLECXk8Hj9XBADWVTSvVXrI+1Tt27dX+/btrTwEAAAA6rhKBcrDhw/r+eef19q1a7Vv3z5JUmxsrJKSkjRx4kQ1bty4WooEAABA7VXhIe+PPvpIV199tTIyMhQcHKyYmBgZY3TkyBEVFhaqYcOGWrZsmQYMGFChAzPkDaA+YcgbQH1U0bxWoYtyDh8+rFGjRik6OlpLlixRenq69u/frwMHDig9PV1vvPGGPB6Phg8fzsTmAAAAAaZCgfKll15SYWGhPv/8cw0fPtxnJQi3262RI0fqs88+U35+vl566aVqKxYAAAC1T4UC5Ycffqjx48erVatWZbZp3bq1xo0bpw8++MC24gAAAFD7VShQbt26Vf379z9tuz/84Q/aunWr5aIAoK7xeDwyxsgYw/mTAAJOhQLlsWPH1LRp09O2a9q0qY4dO2a1JgAAANQhFQqUubm5cjqdp20XEhKivLw8y0UBAACg7qjwPJTbtm1TSEj5zX/44QfLBQFAXZSTk6MxY8ZIkl577TW5XC4/VwQANadC81AGBQXJ4XCc9sGMMXI4HCosLDxtW+ahBFCfMA8lgPrI1qUX58+fb1thAAAAqF8qFCjHjh1b3XUAAACgjqrQRTkAAABAWQiUAAAAsIRACQAAAEsIlAAAALCkwvNQAgDK5na7deLECe82AAQSAiUA2MDhcDD3JICAxZA3AAAALCFQAoANcnNzlZycrOTkZOXm5vq7HACoURVaerE6sPQigPqEpRcB1EcVzWv0UAIAAMASAiUAAAAs4SpvP0hPl7Ky/F0FUL3cbik62t9VAABqAoGyhqWnSw89JKWl+bsSoHrFxEgPPECoBIBAQKCsYVlZJ8NkePjJHhygPip+n2dlESgBIBAQKP3E7ZYiI/1dBVB9srP9XQEAoKYQKAHABm63W4cOHfJuA0AgIVACgA0cDoeaNGni7zIAwC+YNggAAACWECgBwAa5ubm6+eabdfPNN7P0IoCAQ6AEABsUFBRo3rx5mjdvngoKCvxdDgDUKAIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAElbKAQAbhIeHa+fOnd7tuiY9J11Z+Vn+LgOoVm6nW9GuaH+XUS8RKAHABkFBQWrTpo2/y6iS9Jx0PbT2IaVlpfm7FKBaxbhj9MCABwiV1YBACQABLis/S2lZaQoPCZfb6fZ3OUC1KH6fZ+VnESirAYESAGyQl5en+++/X5I0a9YshYaG+rmiynM73YoMi/R3GUC1yS7I9ncJ9RYX5QCADfLz8/XYY4/pscceU35+vr/LAYAaRaAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwjyUAGCD8PBwfffdd95tAAgkBEoAsEFQUJA6d+7s7zIAwC8Y8gYAAIAl9FACgA3y8vI0e/ZsSdJ9991XJ5deBICqIlACgA3y8/M1c+ZMSdKdd95JoAQQUBjyBgAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgA5fLpQ0bNni3ASCQECgBwAbBwcHq2bOnv8sAAL9gyBsAAACW0EMJADbIy8vTU089JUmaMmUKK+UACCgESgCwQX5+vu666y5J0uTJkwmUAAIKQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmDYIAGzgcrmUkpLi3QaAQEKgBAAbBAcHKzEx0d9lAIBfMOQNAAAAS+ihBAAb5Ofn61//+pckaeLEiXI6nX6uCABqDoESAGyQl5enW265RZKUnJxMoAQQUBjyBgAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgg7CwMK1cudK7DQCBhEAJADYICQnRkCFD/F0GAPgFQ94AAACwhB5KALBBfn6+Fi5cKEm67rrrWCkHQEAhUAKADfLy8jRu3DhJ0ogRIwiUAAIKQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmDYIAGwQFhamJUuWeLcBIJAQKAHABiEhIRoxYoS/ywAAv2DIGwAAAJbQQwkANigoKNCyZcskSVdddZVCQvh6BRA4+MYDABvk5uZq5MiRkqQTJ04QKAEEFIa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljCvBQDYIDQ0VPPnz/duA0AgIVACgA2cTqeSk5P9XQYA+AVD3gAAALCEHkoAsEFBQYFWr14tSRo4cCAr5QAIKHzjAYANcnNzddlll0li6UUAgYchbwAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCXMawEANggNDdWzzz7r3QaAQEKgBAAbOJ1O3Xzzzf4uAwD8giFvAAAAWEIPJQDYoLCwUJ9++qkk6Q9/+IOCg4P9XBEA1BwCJQDYICcnR0lJSZJOLr3o8Xj8XBEA1ByGvAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwbRAA2MDpdGrOnDnebQAIJARKALBBaGio7rzzTn+XAQB+wZA3AAAALKGHEgBsUFhYqK+//lqSFB8fz9KLAAIKgRIAbJCTk6NevXpJYulFAIGHIW8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlTBsEADZwOp2aPn26dxsAAgmBEgBsEBoaqhkzZvi7DADwC4a8AQAAYAk9lABgg6KiIm3dulWS1LFjRwUF8fc6gMBBoAQAG2RnZ6tLly6SWHoRQODhT2gAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlTBsEADZwOp2aNm2adxsAAgmBEgBsEBoaqv/5n//xdxkA4BcMeQMAAMASeigBwAZFRUXas2ePJKl169YsvQggoBAoAcAG2dnZatu2rSSWXgQQePgTGgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAnTBgGADUJCQjR58mTvNgAEEr71AMAGYWFh+sc//uHvMgDALxjyBgAAgCX0UAKADYwxSktLkyTFxMTI4XD4uSIAqDkESgCwQVZWlpo2bSqJpRcBBB6GvAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwbRAA2CAkJERjx471bgNAIOFbDwBsEBYWpgULFvi7DADwC4a8AQAAYAk9lABgA2OMsrKyJElut5ulFwEEFHooAcAGWVlZioiIUEREhDdYAkCgIFACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYR5KALBBcHCwhg8f7t0GgEBCoAQAG7hcLi1dutTfZQCAXzDkDQAAAEsIlAAAALCEQAkANsjMzJTD4ZDD4VBmZqa/ywGAGkWgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMJKOQBgg+DgYA0ePNi7DQCBhEAJADZwuVx67733/F0GAPgFQ94AAACwhEAJAAAASwiUAGCDzMxMeTweeTwell4EEHA4hxIAbJKVleXvEgDAL+ihBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJVzlDQA2CAoKUkJCgncbAAIJgRIAbBAeHq41a9b4uwwA8Av+jAYAAIAlBEoAAABYQqAEABtkZmaqSZMmatKkCUsvAgg4nEPpJ6zQhvosUN/faWlp/i4BAPyCQFnD3G4pJkZKS5Oys/1dDVB9YmJOvt8BAPUfgbKGRUdLDzwQuD04CBxu98n3OwCg/iNQ+kF0NL9oAQBA/cFFOQAAALCEQAkAAABLGPIGABsEBQWpR48e3m0ACCQESgCwQXh4uFJTU/1dBgD4BX9GAwAAwBICJQAAACwhUAKADbKystSmTRu1adNGWUw0CyDAcA4lANjAGKPdu3d7twEgkNBDCQAAAEsIlAAAALCEQAkAAABLOIcSACBJysrnYiLUX7y/qxeBEgACnNvpVow7RmlZacouyPZ3OUC1iXHHyO10+7uMeolACQA2cDgc6tSpk3e7Lol2ReuBAQ/Qg4N6z+10K9oV7e8y6iUCJQDYwO126/vvv/d3GVUW7YrmFy2AKuOiHAAAAFhCoAQAAIAlBEoAsEFWVpY6d+6szp07s/QigIDDOZQAYANjjLZs2eLdBoBAQg8lAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAs4SpvALCBw+FQXFycdxsAAgmBEgBs4Ha7tWvXLn+XAQB+wZA3AAAALCFQAgAAwBICJQDYIDs7Wz179lTPnj2VnZ3t73IAoEZxDiUA2KCoqEhffvmldxsAAgk9lAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsISrvAHAJjExMf4uAQD8gkAJADbweDw6fPiwv8sAAL9gyBsAAACWECgBAABgCYESAGyQnZ2txMREJSYmsvQigIDDOZQAYIOioiJ98skn3m0ACCT0UAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBKu8gYAm7jdbn+XAAB+QaAEABt4PB5lZmb6uwwA8AuGvAEAAGAJgRIAAACWECgBwAY5OTkaMmSIhgwZopycHH+XAwA1inMoAcAGhYWFWrVqlXcbAAIJPZQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALDEb1d5G2MkSRkZGf4qAQBsc+oqORkZGVzpDaBeKM5pxbmtLH4LlMePH5cknXHGGf4qAQCqRWxsrL9LAABbHT9+XNHR0WXe7jCni5zVpKioSPv27VNkZKQcDoc/SgAAAEA5jDE6fvy4YmNjFRRU9pmSfguUAAAAqB+4KAcAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEoBffPHFF7rqqqvUunVrhYWFqVmzZurTp4+mTp3q027evHlasGBBhR93zZo1cjgcWrNmTbntFixYIIfD4f0XEhKiFi1a6JprrtGPP/5YhWd00uzZs7V8+fIq1+Uv999/v7p3765GjRrJ5XKpXbt2mjhxonbv3u3v0gDUAQRKADXuvffeU9++fZWRkaE5c+boww8/1FNPPaV+/fpp8eLFPm0rGygra/78+Vq3bp3+93//V7fccoveeecd9e/fX0ePHq3S45UVKOPj47Vu3TrFx8dbrLh6HDt2TNdee61eeeUVffDBB5o2bZpWrlyp3r1768iRI/4uD0At57eJzQEErjlz5qht27ZavXq1QkL+72vommuu0Zw5c2q0li5duqhHjx6SpMTERBUWFmr69Olavny5xo0bZ9txoqKidMEFF9j2eJK0bds2nX322bY81j/+8Q+f/09MTFTbtm01ePBgrVixQuPHj7flOADqJ3ooAdS4I0eOKCYmxidMFjt14tw2bdro+++/1yeffOIdmm7Tpo339h9++EGDBg2S2+1WTEyMJk2a5F2Fq6qKw+XBgwe9+3JycjR16lSdd955io6OVqNGjdSnTx+tWLHC574Oh0OZmZl65ZVXvPUmJiZKKnvI+5133lGfPn3kdrsVGRmpiy++WOvWratQreecc47OP/98PfbYY/r111+r/qTL0KRJE0kq9ecEAKciUAKocX369NEXX3yh2267TV988YXy8/NLbbds2TK1a9dO3bt317p167Ru3TotW7ZM0snAl5CQoO+++07z5s3Ta6+9phMnTuiWW26xVNvOnTslSWeddZZ3X25urn777TdNmzZNy5cv16JFi9S/f38NGzZMr776qrfdunXrFB4ersGDB3vrnTdvXpnHev311zV06FBFRUVp0aJFeumll3T06FElJibqs88+O22t//nPf9S9e3c9/PDDat26tRISEvTPf/5TaWlpVX7+BQUFys7O1saNG/WXv/xFZ511loYNG1blxwMQIAwA1LC0tDTTv39/I8lIMk6n0/Tt29c8/PDD5vjx4z5tO3fubBISEko8xt13320cDofZtGmTz/6LL77YSDIpKSnl1jB//nwjyaxfv97k5+eb48ePmw8++MA0b97cDBgwwOTn55d534KCApOfn28mTJhgunfv7nObx+MxY8eOLXGflJQUn7oKCwtNbGys6dq1qyksLPS2O378uGnatKnp27dvufWfKi8vz6xcudJcf/31JjIy0oSEhJjBgweb1157rcTrWZ79+/d7fyaSTO/evc3evXsrfH8AgYseSgA1rnHjxvr000+VmpqqRx55REOHDtX27dt17733qmvXrhXqYUtJSVHnzp117rnn+uwfPXp0pWq54IIL5HQ6FRkZqUGDBqlhw4ZasWJFiWHepUuXql+/foqIiFBISIicTqdeeuklbd26tVLHK7Zt2zbt27dPY8aM8Rnmj4iI0NVXX63169crKyurQo/ldDo1ZMgQvfbaazp06JDeeOMNeTweTZw4UU2bNtXSpUsr9DgxMTFKTU3VZ599phdeeEG//fabkpKStH///io9RwCBg0AJwG969Oihu+++W0uXLtW+fft0++23a9euXRW6MOfIkSNq3rx5if2l7SvPq6++qtTUVH388ce66aabtHXrVl177bU+bd5++22NHDlSLVu21L///W+tW7dOqampGj9+vHJycip1vFPrl6QWLVqUuC02NlZFRUVVutI8Oztb6enpSk9PV35+vjwej1wuV4XuGxISoh49eqhfv3668cYb9fHHH+vnn3/WI488Uuk6AAQWzrQGUCs4nU5Nnz5dTzzxhL777rvTtm/cuLEOHDhQYn9p+8rTsWNH74U4SUlJKiws1Isvvqg333xTw4cPlyT9+9//Vtu2bbV48WI5HA7vfXNzcyt1rN/XL6nU3r99+/YpKChIDRs2rNBjHT9+XCtWrNAbb7yhDz/8UGFhYRo6dKhWrFihSy65pMoX1bRq1UqxsbHavn17le4PIHDQQwmgxpU1hFo8fBwbG+vdFxYWpuzs7BJtk5KS9P3332vz5s0++19//XVLtc2ZM0cNGzbUgw8+qKKiIkknr94ODQ31CZMHDhwocZV3efX+3tlnn62WLVvq9ddflzHGuz8zM1NvvfWW98rv8ixevFjDhg1T06ZNNWHCBAUHB3uHvf/9739r8ODBlq7Q/umnn/Trr7/qzDPPrPJjAAgMBEoANW7gwIEaPHiwnnvuOaWkpOijjz7S3LlzNWzYMEVERGjKlCnetl27dtXmzZu1ePFipaam6ttvv5Uk/eUvf1FMTIyGDBmiBQsW6P3339f111+vH374wVJtDRs21L333qutW7d6w+lll12mbdu2afLkyfr444/1yiuvqH///qUOV3ft2lVr1qzRu+++qy+//FLbtm0r9ThBQUGaM2eONm3apMsuu0zvvPOOli5dqqSkJB07dqxCw8yjR4/WsWPH9Mwzz+jgwYNasWKFRo0apfDw8Eo952+++UYXXXSRnnvuOa1evVr/+c9/9PjjjyspKUmNGzfWtGnTKvV4AAKQv68KAhB4Fi9ebEaPHm06dOhgIiIijNPpNK1btzZjxowxW7Zs8Wm7a9cuc8kll5jIyEgjycTFxXlv27Jli7n44ouNy+UyjRo1MhMmTDArVqyo1FXeqampJW7Lzs42rVu3Nh06dDAFBQXGGGMeeeQR06ZNGxMWFmY6duxoXnjhBTN9+nTz+6/RTZs2mX79+hm3220kea9Q//1V3sWWL19uevfubVwul/F4POaiiy4yn3/+eYVex3379lWo3ekcOHDAXH/99aZ9+/bG7Xab0NBQ065dOzNp0iSzZ88eW44BoH5zGHPKWAsAAABQSQx5AwAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAkv8H0dUzZ9YqV+MAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Event 4: Swallow\n", "Start time: 86.629 sec, End time: 87.952 sec\n", "left std ratio: 1.689, right std ratio: 4.807\n", "LM_max_index: 87.749, LL_max_index: 87.533, left delta t: 0.216\n", "RM_max_index: 87.331, RL_max_index: 87.098, right delta t: 0.234\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRAUlEQVR4nO3deXgUVd728buTdNLpTghL2JcAKsqqRBYFhiQ6CgYVRRZFGQIoOrigAi7jo8A4ovKK2zio48LiIAoioLjgjAZRByQq4ALiBqLsQQiQfTnvHzzphzYLSaqSStLfz3Xloqg63fXrTnfn7jpV57iMMUYAAABAFYU4XQAAAADqNgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJYLWmjVr5HK5NGPGDKdLqRPKer7at2+v9u3bO1JTWVJSUuRyubRjxw6nS6m15s+fL5fLpfnz51f7vnivOaOs5z0xMVEul8uZolBvEShRaTt27JDL5ZLL5VLr1q1VWFhYaruvvvrK3+6MM86o4Sprj6ysLD3xxBNKSkpS06ZN5Xa71bhxYw0YMEAPPfSQDhw44HSJdU5NhiG7ffDBB/73xapVq5wuB5ImTZrk/53s3bu3UrfduXOnJk2apNNOO00ej0dRUVHq2LGjhgwZoocffliZmZnVVDVQu4Q5XQDqrrCwMO3evVurV69WcnJyie0vvPCCwsLCVFBQ4EB1tcPmzZs1dOhQ/fzzz4qLi9Oll16q5s2b68iRI1q/fr3uvvtuPfjgg9q9e7d8Pp/T5VbJ+++/73QJJTz44IO666671Lp1a6dLKeHFF1+UJLlcLr3wwgu6+OKLHa6o+vXp00dbt25VbGys06WU8P777+uZZ56Rz+erdPjbvHmzEhMTdfjwYfXv318XXXSRwsPDtX37dn322Wd6++23dcUVV+jUU0+tpuqB2oNAiSrr16+fNm/erBdffLFEoMzLy9OiRYuUnJysN954w6EKnfXrr7/qwgsvVHp6uubMmaPJkycrNDQ0oM3GjRt10003KT8/36EqrTvllFOcLqGEli1bqmXLlk6XUcLhw4f1+uuvq0+fPvJ4PFq1apX27dun5s2bO11atfJ6vbWyl+Lo0aOaMGGCLr/8ch08eFAffvhhpW5/++236/Dhw1q4cKHGjBlTYvu6detqZYgGqgNd3qiyyMhIjRo1Sm+++abS09MDtr3xxhtKT0/XuHHjSr1teee4zZgxQy6XS2vWrAlYv2zZMiUkJKhZs2byeDxq27atBg8erBUrVpS4jy+//FLXXHON2rRpo4iICLVs2VKDBw/Wm2++WaHHtn//ft1222069dRTFRERodjYWF1xxRX6+uuvK3R7Sbrnnnu0f/9+/eUvf9Htt99eIkxKUs+ePfXhhx+qQYMGAetXrVqlpKQkxcTEKDIyUmeddZYef/zxMk8vqGj74tMVUlJS9O2332rYsGGKjY0N+F1kZ2frrrvuUtu2beXxeNStWzc999xzZT7O0s6hPPF3uGTJEsXHxysyMlItW7bULbfcouzs7ID2eXl5+vvf/65Bgwapbdu2ioiIULNmzTRs2DBt3LgxoG1KSor/dTVu3Dh/V+WJ54SV9/pasGCBzjnnHEVFRSkqKkrnnHOOFixYUKLdieefffHFFxo0aJCio6MVExOjyy+/vErnZ7788svKzs7WmDFj9Kc//UkFBQVauHBhqW1PfAxz585V586d5fF4FBcXp5kzZ6qoqCigfUZGhh5++GElJCSoVatWCg8PV6tWrfSnP/1JP/7440lrO3r0qKKjo9W1a9dStxcWFqpVq1Zq2rSp8vLyJEk5OTmaM2eOzjzzTMXExCgqKkqnnHKKrrrqKn311Vf+25Z1Lt/333+vcePGqUOHDvJ4PIqNjVV8fLymTJly0nrtMGXKFB09elRz586t0u3XrVunhg0blhomJencc89Vw4YNJUlFRUVq3LixzjrrrIA2Bw4cUEhIiFwulz7++OOAbaNGjZLL5dK+ffskVe59UhUFBQV67LHHdOaZZyoyMlIxMTFKSkrSW2+9FdBu06ZNcrlcuvXWWwPWL126VC6XSz6fz/8aKdaiRQt17tzZco2oxQxQSdu3bzeSzKBBg8z69euNJPP4448HtLnoootMs2bNTH5+vpFkTj/99IDtY8eONZLM9u3bS9z/9OnTjSSTmprqXzd37lwjybRs2dJMnDjR3H333SYlJcV06dLFjB07NuD2r7/+uomIiDBut9sMGzbM3H333WbChAmmW7duZujQof52qampRpKZPn16wO1/+OEH06ZNG+NyucygQYPMlClTzJgxY4zX6zU+n8+sX7/+pM9RZmamCQ8PN5GRkebw4cMnbX+ixx9/3EgyjRs3NjfccIOZMmWK6dSpk5Fkhg0bZoqKiqrcvvh3179/fxMTE2P69etnbr/9dpOSkmJ27dplCgsLzR//+EcjyXTv3t3ccccdZsKECcbn85mLL7641OcrLi7OxMXFBawr/h0OHz7c+Hw+M3r0aHPbbbeZzp07G0lm9OjRAe337NljQkJCTEJCgpk4caK58847zYgRI0xERITxeDxmw4YN/rbLly83Q4cONZLM0KFDzfTp0/0/xcp6fd16661GkmndurW55ZZbzOTJk02bNm2MJHPbbbcFtC1+fQwZMsR4vV6TnJxspkyZYs477zwjyZxyyikmOzu7gr/V4+Lj443b7TYHDhwwGRkZJjIyssR74/ePYfjw4SY2NtakpKSYW265xbRr185IMn/5y18C2q9bt86Eh4ebQYMGmUmTJplp06aZSy65xISGhprGjRubHTt2BLSfN2+ekWTmzZvnX3fdddcZSeaTTz4pUc/KlSuNJDNlyhT/upEjRxpJpkePHmby5MnmjjvuMFdeeaVp3rx5wP2W9l7btWuXadiwoXG73eayyy4zd955p7nxxhvNhRdeaNxudyWe1apZvXq1kWQWLlxojDEmISHBSDJ79uwp0bb49fz7137r1q1NWFhYqbcpzWWXXWZcLpdJT0/3r1uyZImRZCSZv/71rwHtmzdvbjp37uz/f2XeJ8aU/RlX/FhPVFRUZIYNG2YkmU6dOpkpU6aYG264wTRu3NhIMk888URA28aNG5sePXoE3MekSZP8j2Xt2rX+9Vu2bDGSzJ///OcKPU+omwiUqLQTA6UxxnTt2jXgg+XXX381oaGh/j88dgTK+Ph4Ex4ebvbv31+i/Ykfzvv27TNRUVHG5/OZL774okTbX375xb9c1odtv379TFhYmHnvvfcC1m/bts1ER0eb7t27l7jf31uzZo2RZAYMGHDStif68ccfTVhYmGnWrJnZuXOnf31ubq7/j8BLL71U5fbFvztJ5t577y2x/+KQMXjwYFNQUOBf/+WXX5rw8PBKB8qYmBjz7bff+tdnZWWZTp06GZfLZXbt2uVfn5OTY3799dcS9Xz99dcmKirK/PGPfyy1zhNDy4lKe32tXbvWSDKdO3cOCPmHDx82Z5xxhpFkPvroI//64teHJPPKK68E3P+YMWOMJLN48eJS91+ajRs3Gknm0ksv9a+76qqrjCTz8ccfl/kYOnToYHbv3u1ff+DAAdOwYUMTHR1tcnNzAx7HwYMHS9zPBx98YEJCQsy1114bsL605zAtLc1IMuPGjStxP5deeqmRZLZu3erfn8vlMr169Qp4rRhjTEFBgTl06JD//6W915588skSQeXEx1idMjIyTNu2bU1ycrJ/XVUCZfEXlFNOOcXMmTPHbNiwodwvGU888YSRZJYtW+Zf9+c//9k0bNjQxMfHm6SkJP/6b775xkgykyZN8q+r7PukMoFy4cKFRpJJSEgIeF398ssvplmzZsbtdpuffvrJv/7yyy83Lpcr4HfVuXNnk5iYaEJDQ83MmTP96//xj38YSWbJkiVlPjeo++jyhmXjxo3Tl19+qc8//1zS8StwCwsLNX78eFv343a75Xa7S6xv0qSJf3nBggU6duyYpkyZop49e5Zo26ZNm3L3sXHjRv33v//V2LFjdcEFFwRs69Spk6677jp99dVXJ+36Lr5S9GT7+71FixapoKBAU6ZMUdu2bf3rw8PD9dBDD0lSwJXNlW1frEWLFvqf//mfEuuLu18feOCBgC767t27l9mtV57Jkyfr9NNP9/8/MjJSV111lYwx/teLJEVERJR6AU3Xrl2VlJSktWvXWj7PtPh5mDFjhmJiYvzrY2JiNH369IA2Jxo4cKBGjRoVsK74tZ2Wllbh/b/wwguSFPA8/ulPfwrYVpp777034HzQ2NhYDR06VEePHtW2bdsCHkfjxo1L3D4pKUldu3bVf/7zn5PW2KtXL8XHx2vJkiU6evSof/3evXv19ttva8CAAf5zIV0ul4wxioiIKHE6R2hoqL+r92QiIyNLrKvu8w5vvfVWZWRk6Nlnn61Q+5tuuklbt27VTTfdFLB+1qxZ+tOf/qTt27drypQp6tOnj6KionT22Wfrb3/7mw4fPhzQPjExUdLxK/2LpaamKiEhQX/84x+1bt065eTk+NefeBupet8nxa/92bNnKzw83L++TZs2uu2225Sfn69FixYFPBZjjP/UpH379mnr1q0aOnSozj777BKPUZISEhKqVBvqBgIlLBszZozcbrf/6tX58+erb9++6tKli237GDlypDIzM9WtWzdNnTpVq1atKvFhLUkbNmyQJF144YVV2s/69eslHf8DOmPGjBI/3377rST5/7Vb8XlQJ/4RKXbOOecoMjJSmzZtqnL7YmeeeWbAH41imzdvltfrVXx8fIltf/jDHyr2IE5Q2v0Uh+zf//42bdqk0aNHq127dgoPD/efF/nmm28qLy+vxHm6lVXec1W8rrTnqjKPoSy5ublatGiRGjZsqEsuucS//oILLlDLli21ZMkSHTt2rNTbVmb/a9as0WWXXaaWLVvK7Xb7n8OvvvpKu3fvrlCt119/vTIzM7V48WL/uvnz56ugoEDXXnutf12DBg00ePBgffLJJ4qPj9esWbP00UcflTh3riwXX3yxvF6vbrzxRo0cOVIvvviivvvuuwrdVjr+u/r9+7Miw0i98847mjdvnmbPnl3hL3yxsbE644wzSgTdyMhILViwQD///LOeffZZTZgwQV26dNEXX3yhe++9V927d9dPP/3kb9+9e3fFxsb6A9bevXv17bffKikpSUlJScrJydG6deskHQ9hLperxOu1ut4nGzduVGRkpPr06VNiW2nvj6SkJH+dJ/5b/FjWr1+vnJwcGWP04YcfqmvXrmrWrFmVakPdwFXesKxZs2ZKTk7W4sWLdemll+qHH37Q1KlTbd3HHXfcoSZNmuiZZ57Ro48+qjlz5igsLEzJycl6/PHH1aFDB0n/9we2qsPF/Pbbb5Kkt956q8SJ6Cc62fAiLVq0kCTt2rWrUvs/cuSIJJV51W+zZs0C7rOy7YuV1T4jIyPgSGdFblOeE48EFgsLO/6xc+IFQ//973913nnnSTr+ZeC0005TVFSUXC6XVqxYoc2bNys3N7fS+z/RkSNHFBISoqZNm5bY1rx5c4WEhCgjI6PKj6E8y5cv16FDh3TdddcpIiLCvz40NFRXX321HnnkEb366quaMGFClfe/dOlSjRo1SlFRURo0aJDat28vr9frH6/z559/rlCto0eP1pQpU/T8889r4sSJko4PdRQTE6MRI0YEtH3ttdc0a9YsLV68WPfcc48kKTo6WuPHj9esWbPk9XrL3E+HDh20bt06zZw5U++8846WLl0qSTr99NN1//33l9jX723atEkzZ84MWJeQkKCUlJQyb5OVlaXrrrtOSUlJ/sdmhzZt2mjixIn++/zxxx81fvx4rV27VrfddptWrlwp6fhR3YSEBC1btkz79u0LCGEdO3ZUWFiYUlNTlZiY6A9hJ75eq/N9cuTIkTLf+8WfZye+P7p166amTZsGBMomTZqoR48e2rt3rx5++GH997//VdOmTXXgwIESR/lR/xAoYYvx48dr5cqVmjBhgr9bszwhIccPjpc2RmVpf9RdLpeuvfZaXXvttTp48KA++ugjLV68WEuWLNH333+vr776KqCbbdeuXVWavaX4auu///3vJbq3KqN3794KDw/XZ599piNHjpS4ivtk+9+3b5/i4uJKbN+/f3/AfVW2fbGyZsmIiYnR/v37S91WfKVpdXjggQeUm5urjz/+WP379w/Ytn79em3evNnyPho0aKCioiIdOHCgxJGS/fv3q6ioqMK/p8oq7tJ+7rnnyrxi/oUXXig1UFbUjBkz5PF49Pnnn+u0004L2PbKK69U+H6ioqI0evRo/fOf/9SXX36p3377Td9//70mTZpUIiD6fD498MADeuCBB7R9+3alpqbqmWee0RNPPKHs7OyTdin36NFDy5YtU35+vj7//HO98847evLJJzVq1Ci1atWqxGvhRCkpKeWGx9Ls379fu3bt0q5du/yfQb9XfHrBxo0bS1yRXVGnnHKK5s+fr44dOwZ0/UrHw+OyZcu0Zs0arVmzRrGxserevbtcLpd69+6t1NRUjRgxQunp6SU+R6vzfdKgQYMy3+PF6098fxSH49dee0179+7VmjVrlJCQIJfLpQEDBsjtdis1NdX/Xis+oon6iy5v2CI5OVktWrTQrl27dMUVV5z0D3OjRo0klX4E72TDXzRp0kSXXXaZXn31VZ133nnaunWrfvjhB0nyd9e89957VXkY6tu3ryT5u52qyuv16sorr1R2drbmzJlTbtuCggL/EDDF533+fsgk6Xh3fnZ2dsAfucq2P5kzzzxTWVlZ+uKLL0ps++ijjyp8P5X1448/qnHjxiX+SJZVS/E5exU9QiiV/1wVjz9Y1QBRnh07duj9999X8+bNNWHChFJ/2rVrp3Xr1mnr1q1V3s+PP/6ozp07lwiTu3fvrtCwQSe6/vrrJUnPP/+8Pwyf2N1dmg4dOmj8+PH68MMPFRUVVanxZ91ut8455xzNnDlTTz75pIwx1TKLUHR0dJm/g+KjcKNHj9aECRMCzs2uirImKjjxPMrio5HFX/DOO+88ffrpp/7H/vvu7sq+TyqjZ8+eys7O9p82dKKy3h/F9S1atEjfffed/+ipz+dTnz59/I+xOHyifiNQwhZhYWF64403tHz5cj3wwAMnbd+rVy9JJS+CeO2110odXHj16tUljmbm5+f7u6iLT+wfO3asoqKiNGfOnFLPhztZF3SfPn3Ut29fLV68WK+++mqJ7UVFRRUe/PiBBx5Q06ZN9cADD+jJJ58sMW6gdHy8zMTERH/X9ejRoxUWFqZHH3004Jy3/Px83XXXXZIUcFSmsu1PpviCkXvuuScgrH311Vd66aWXKnw/lRUXF6dDhw7pm2++8a8rLCzU1KlTS52asvjik19//bXC+xg7dqwkaebMmf7nWzre1VfcdVrcxk7z5s2TMUY33HCDnn/++VJ/isddLO/inJOJi4vTDz/8EHCUKScnR3/+858rPVtVfHy8zj77bP3rX//SsmXLdPbZZ5e4yO3AgQOlho9Dhw4pNze31IttTpSWllbq0fDi+k92+6po0qRJmb+D4ovH5syZo+effz6g+zc9PV3ffvttifMT//rXv+qXX34psR9jjB588EFJ0oABAwK2FZ9LuHz5cn3//fcBR+6SkpKUn5+vxx57rNQQVtn3SWUUv/bvvvvugAt7du3apUcffVRhYWG6+uqrA25TXPvDDz8c8P/i5bS0NKWmpqp79+6WAzpqP7q8YZvevXurd+/eFWp72WWXqUOHDpo/f75++eUX9ezZU1u3btUHH3yg5ORkvf322wHtR40aJa/XqwEDBiguLk75+fn697//rS1btmjUqFFq166dpOPnDC5cuFBXXnml+vTpo0svvVSnn3660tPT9emnn6p9+/alDoR+osWLFyspKUlXXnmlHn/8cZ199tnyeDzauXOn1q1bpwMHDvivxCxPmzZt9N577+myyy7T5MmT9dhjj+n888/3T724YcMGpaWlqUGDBv6r10855RQ9/PDDmjJlinr06KGRI0fK5/Np1apV+vbbbzV06FBdc801/n1Utv3JjB07Vi+//LLeffdd9ezZUxdddJF+++03LV68WBdeeGG1zT19880367333tOAAQM0cuRIeTwerVmzRrt27VJiYmKJo4rnnnuuIiMj9fjjj+vIkSP+88yKQ3RpBg4cqJtvvll///vf1a1bN11xxRUyxuj111/XL7/8oltuuUUDBw609XEVFRX55x0vL9hfffXVmjZtml566SU9+OCDpY5mcDI333yzbr75ZvXs2VPDhw9XQUGB/v3vf8sYozPPPLPS3aHXX3+9/5zA0o5O7tq1S3379lXXrl0VHx+v1q1b6+DBg1q5cqXy8/N1xx13lHv/ixYt0ty5c5WYmKhTTz1VDRo00JYtW/T2228rNjbW9lEirHjqqac0c+ZMTZ8+PWBw9kcffVQzZsxQr169dPbZZ6tx48Y6ePCgPvjgA33//fdq0qRJqT0UiYmJWrJkiaTAENavXz9FRETowIEDOvPMM0uEsMq+TypjzJgxev3117Vy5Ur16NFDF198sTIzM7VkyRIdPHhQc+bMUceOHQNu06VLFzVv3tw/29OJF2ImJSX5r3Svji9qqIUcG7AIddbvx6E8GZUyDqUxxvz0009m6NChJjo62vh8PnP++eebtLS0Mgc2v/TSS01cXJzxeDymSZMmpm/fvubZZ581+fn5Je5748aNZuTIkaZ58+bG7Xabli1bmosuusisWrXK36asMdqMMea3334z//M//2O6detmIiMjTVRUlDnttNPM6NGjzeuvv16hx10sMzPTPP744yYhIcHExsaasLAw07BhQ3Puueeav/3tbwHjaBZbuXKlSUhIMNHR0SYiIsJ0797dzJkzp9THWpn2xb+73w8G//t677jjDtO6dWsTERFhunTpYp599tkyn6/yxqE88XdYrKwxJF977TUTHx9vvF6viY2NNSNHjjQ//vhjmWOWvvXWW6Z3794mMjLSP15ksfLGOX3xxRdN7969jdfrNV6v1/Tu3du8+OKLJdqV9/qoyPNojDHvvvuukWTOP//8ctsZY8wVV1wRMEZhZcdqLSoqMs8884zp2rWr8Xg8pkWLFmbChAlm3759pY47eLKxPI8ePWrcbrfxer0mIyOjxPZDhw6ZGTNmmIEDB5qWLVua8PBw06pVKzN48GCzevXqgLalPZfr1683119/venWrZtp2LChiYyMNKeddpq55ZZbAsZUrSlVGYdy7dq15q677jLnnnuuadWqlXG73SYqKsr06NHDTJ06NWD80BM9/fTTRpJp3rx5iW0DBw40kszkyZNLvW1l3ieVGYfSGGPy8/PNI488Yrp3724iIiJMdHS0SUhIMCtXriy1FmOMGTVqlJFkRo0aFbA+OzvbREREGElm+fLlZd4e9YfLGGNqIrgCAOqODRs2qG/fvho3bpx/SDAAKAvnUAIASnjkkUckSTfccIPDlQCoCziHEgAgSdq5c6defvllffPNN1q6dKkGDx5c6kDXAPB7dHkDACQdH1IpKSlJUVFROu+88/Tss8/6h9MBgPIQKAEAAGAJ51ACAADAEsfOoSwqKtLu3bsVHR1d5jRwAAAAcI4xRkePHlWrVq3KnLJUcjBQ7t69u8yJ6AEAAFB7/PLLL2rTpk2Z2x0LlNHR0ZKOF3iyeZ8BoLbLzMxUq1atJB3/wlzWXM4AUJccOXJEbdu29ee2sjgWKIu7uRs0aECgBFDnhYaG+pcbNGhAoARQr5zs9EQuygEAAIAlBEoAAABYQqAEAACAJbV66sWioiLl5eU5XUa94Ha7A87xAgAAsEutDZR5eXnavn27ioqKnC6l3mjYsKFatGjBuJ8AAMBWtTJQGmO0Z88ehYaGqm3btuUOpImTM8YoKytL+/fvlyS1bNnS4YqA+ic0NFTJycn+ZQAIJrUyUBYUFCgrK0utWrWS1+t1upx6ITIyUpK0f/9+NWvWjD94gM08Ho/eeustp8sAAEfUykN/hYWFkqTw8HCHK6lfisN5fn6+w5UAAID6pFYGymKc62cvnk8AAFAdanWgBIC6IjMzUz6fTz6fT5mZmU6XAwA1qlaeQ1mWjAwpK6vm9uf1SjExNbc/AHVbVk1+QAFALVJnAmVGhnT//VJ6es3tMzZWuvfemgmVxhhdf/31eu2113To0CFt3LhRZ511VvXvGAAAwKI6Eyizso6HycjI40cOa2p/WVkVD5QpKSk6fPiwVqxYUen9vfvuu5o/f77WrFmjjh07KjY2Vi6XS8uXL9dll11W6fsDAACoKXUmUBbzeqXo6JrZV3Z2zexHkn788Ue1bNlS/fr1q7mdAgAA2ICLcmrIli1blJycrKioKDVv3lxjxoxR+v/236ekpOjmm2/Wzp075XK51L59e7Vv316SdPnll/vXAQAA1EYEyhqwZ88eJSQk6KyzztJnn32md999V/v27dPIkSMlSU888YT++te/qk2bNtqzZ4/S0tKUlpYmSZo3b55/HQAAQG1U57q866Knn35a8fHxmjVrln/diy++qLZt2+q7775Tp06dFB0drdDQULVo0SLgtsXzbwOo3UJCQpSQkOBfBoBgQqCsAZ9//rlSU1MVFRVVYtuPP/6oTp06OVAVADtFRkZqzZo1TpcBAI4gUNaAoqIiXXLJJXr44YdLbGvZsqUDFQEAANiHQFkD4uPjtWzZMrVv315hYRV/yt1ut39ecwAAgNqqzgXKmpqIoqr7ycjI0KZNmwLWXX/99Xruued01VVXadq0aYqNjdUPP/ygV155Rc8995xCQ0NLva/27dvr/fffV//+/RUREaFGjRpVrSgA1S4zM9M/GsOOHTvk8/mcLQgAalCdCZRe7/GZa9LTa258yNjYyg+ivmbNGvXs2TNg3dixY/XJJ5/ozjvv1KBBg5Sbm6u4uDgNHjy43JP358yZo9tvv13PPfecWrdurR07dlThUQCoKek1OZUXANQiLmOMcWLHR44cUUxMjDIyMtSgQYOAbTk5Odq+fbs6dOggj8fjX89c3taU9bwCsC4zM9N/4d2xY8c4QgmgXigvr52ozhyhlI6Hu/oU8AAAAOoDBksDAACAJQRKAAAAWEKgBAAAgCV16hxKAKitQkJC1KtXL/8yAAQTAiUA2CAyMlJpaWlOlwEAjuBrNAAAACwhUAIAAMCSOtXlnZGToaz8mhvZ3Ov2KsbDwJcATi4rK0tdunSRJG3ZskXeyk6zBQB1WJ0JlBk5Gbp/7f1Kz6q5qc1ivbG6d+C9toZKl8ul5cuX67LLLqtQ+zVr1igpKUmHDh1Sw4YNbasDgL2MMfr555/9ywAQTOpMoMzKz1J6VroiwyLldVf/N//i/WXlZ1U4UKakpGjBggWSpNDQULVq1UpDhgzRrFmz1KhRI0nSnj17/Mt2mTFjhlasWKFNmzbZer8AAAAVUWcCZTGv26voiOga2Vd2QXalbzN48GDNmzdPBQUF2rJli8aPH6/Dhw9r8eLFkqQWLVrYXSYAAICjuCjHZhEREWrRooXatGmjCy+8UKNGjdJ7773n3+5yubRixQr////73//qrLPOksfjUa9evbRixQq5XK4SRxs///xz9erVS16vV/369dO2bdskSfPnz9fMmTO1efNmuVwuuVwuzZ8/vwYeKQAAwHEEymr0008/6d1335Xb7S51+9GjR3XJJZeoe/fu+uKLL3T//ffrzjvvLLXtPffcozlz5uizzz5TWFiYxo8fL0kaNWqUpkyZoq5du2rPnj3as2ePRo0aVW2PCQAA4PfqXJd3bbdq1SpFRUWpsLBQOTk5kqRHH3201LaLFi2Sy+XSc889J4/Hoy5dumjXrl267rrrSrR94IEHlJCQIEm66667NGTIEOXk5CgyMlJRUVEKCwujOx0AADiCQGmzpKQkPf3008rKytLzzz+v7777TjfffHOpbbdt26YePXrI4/H41/Xp06fUtj169PAvt2zZUpK0f/9+tWvXzsbqAVSVy+XyDxvkcrkcrgYAahZd3jbz+Xw69dRT1aNHDz355JPKzc3VzJkzS21rjCnxh6es4UZO7DYvvk1RUZFNVQOwyuv16ptvvtE333zDGJQAgg6BsppNnz5djzzyiHbv3l1i2xlnnKEvv/xSubm5/nWfffZZpfcRHh6uwsJCS3UCAABUVZ0LlFn5WTqae7Taf+yakScxMVFdu3bVrFmzSmwbPXq0ioqKNHHiRG3dulWrV6/WI488IqlyXWbt27fX9u3btWnTJqWnpwcEVAAAgOpWZ86h9Lq9ivXGKj0rvUrjQ1ZFrDfWlkHUb7/9do0bN67EFdwNGjTQm2++qT//+c8666yz1L17d913330aPXp0wHmVJ3PFFVfo9ddfV1JSkg4fPqx58+YpJSXFct0AKi4rK0u9e/eWJKWlpdHtDSCouIxDc4QdOXJEMTExysjIUIMGDQK25eTkaPv27erQoUNAsAqGubwXLVqkcePGKSMjQ5GRkbbed1nPKwDrMjMzFRUVJUk6duyYfD6fwxUBgHXl5bUT1ZkjlJIU44mp8YBX3RYuXKiOHTuqdevW2rx5s+68806NHDnS9jAJAABQXepUoKyP9u7dq/vuu0979+5Vy5YtNWLECD3wwANOlwUAAFBhBEqH3XHHHbrjjjucLgMAAKDK6txV3gAAAKhdanWgdOh6oXqLgdABAEB1qJVd3m63Wy6XSwcOHFDTpk2ZxswiY4zy8vJ04MABhYSEKDw83OmSgHrH5XIpLi7OvwwAwaRWBsrQ0FC1adNGv/76q3bs2OF0OfWG1+tVu3btFBJSqw9MA3WS1+vl8wpA0KqVgVKSoqKidNpppyk/P9/pUuqF0NBQhYWFceQEAADYrtYGSul4CAoNDXW6DAAAAJSDvk8AsEF2drZ69+6t3r17Kzu7ZqaHBYDaolYfoQSAuqKoqEifffaZfxkAgglHKAEAAGAJgRIAAACWECgBAABgCedQOiAjQ8rKcroKoHp5vVJMjNNVAABqAoGyhmVkSPffL6WnO10JUL1iY6V77yVUAkAwIFDWsKys42EyMvL4ERygPip+nWdlBVegjI2NdboEAHAEgdIhXq8UHe10FUD1CbahGH0+nw4cOOB0GQDgCC7KAQAAgCUESgAAAFhCoAQAG2RnZysxMVGJiYlMvQgg6HAOJQDYoKioSB9++KF/GQCCCUcoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCVd5A4BNvMynCiBIESgBwAY+n0+ZmZlOlwEAjiBQAgCUkZOhrPwsp8sAqpXX7VWMJ8bpMuolAiUABLmMnAzdv/Z+pWelO10KUK1ivbG6d+C9hMpqQKAEABvk5OToiiuukCQtW7ZMHo/H4YoqLis/S+lZ6YoMi5TXzXmgqJ+KX+dZ+VkEympAoAQAGxQWFurtt9/2L9dFXrdX0RHRTpcBVJvsgmynS6i3GDYIAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCcMGAYANfD6fjDFOlwEAjuAIJQAAACwhUAIAAMASAiUA2CAnJ0cjRozQiBEjlJOT43Q5AFCjCJQAYIPCwkK99tpreu211+rs1IsAUFUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCVMvQgANvB6vTp27Jh/GQCCCYESAGzgcrnk8/mcLgMAHEGXNwAAACwhUAKADXJzc5WSkqKUlBTl5uY6XQ4A1CgCJQDYoKCgQAsWLNCCBQtUUFDgdDkAUKMIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEuYKQcAbOD1erV//37/MgAEEwIlANjA5XKpadOmTpcBAI6gyxsAAACWECgBwAa5ubm68cYbdeONNzL1IoCgQ6AEABsUFBRo7ty5mjt3LlMvAgg6BEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlzJQDADaIjIzU9u3b/csAEEwIlABgg5CQELVv397pMgDAEXR5AwAAwBICJQDYIC8vT9OmTdO0adOUl5fndDkAUKMIlABgg/z8fD3yyCN65JFHlJ+f73Q5AFCjCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmCkHAGwQGRmpr7/+2r8MAMGEQAkANggJCVHXrl2dLgMAHEGXNwAAACzhCCUA2CAvL0+zZs2SJP3lL39ReHi4wxUBQM0hUAKADfLz8zVz5kxJ0rRp0wiUAIIKXd4AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLGDYIAGzg8Xi0YcMG/zIABBMCJQDYIDQ0VL1793a6DABwBF3eAAAAsIQjlABgg7y8PD3xxBOSpMmTJzNTDoCgQqAEABvk5+frjjvukCRNmjSJQAkgqNDlDQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRhgwDABh6PR6mpqf5lAAgmBEoAsEFoaKgSExOdLgMAHEGXNwAAACzhCCUA2CA/P1///Oc/JUkTJ06U2+12uCIAqDkESgCwQV5enm666SZJUkpKCoESQFChyxsAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJwwYBgA0iIiK0atUq/zIABBMCJQDYICwsTEOGDHG6DABwBF3eAAAAsIQjlABgg/z8fC1atEiSdPXVVzNTDoCgQqAEABvk5eVp3LhxkqQRI0YQKAEEFbq8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljBsEADYICIiQkuWLPEvA0AwIVACgA3CwsI0YsQIp8sAAEfQ5Q0AAABLOEIJADYoKCjQ8uXLJUmXX365wsL4eAUQPPjEAwAb5ObmauTIkZKkY8eOESgBBBW6vAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwrgUA2CA8PFzz5s3zLwNAMCFQAoAN3G63UlJSnC4DABxBlzcAAAAs4QglANigoKBAq1evliQNGjSImXIABBU+8QDABrm5ubr44oslMfUigOBDlzcAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASxrUAABuEh4frqaee8i8DQDAhUAKADdxut2688UanywAAR9DlDQAAAEs4QgkANigsLNRHH30kSfrDH/6g0NBQhysCgJpDoAQAG+Tk5CgpKUnS8akXfT6fwxUBQM2hyxsAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJwwYBgA3cbrdmz57tXwaAYEKgBAAbhIeHa9q0aU6XAQCOoMsbAAAAlnCEEgBsUFhYqC+++EKSFB8fz9SLAIIKgRIAbJCTk6M+ffpIYupFAMGHLm8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlDBsEADZwu92aPn26fxkAggmBEgBsEB4erhkzZjhdBgA4gi5vAAAAWMIRSgCwQVFRkbZu3SpJ6ty5s0JC+L4OIHgQKAHABtnZ2erWrZskpl4EEHz4Cg0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEYYMAwAZut1tTp071LwNAMCFQAoANwsPD9f/+3/9zugwAcARd3gAAALCEI5QAYIOioiLt3LlTktSuXTumXgQQVAiUAGCD7OxsdejQQRJTLwIIPnyFBgAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMKwQQBgg7CwME2aNMm/DADBhE89ALBBRESE/vGPfzhdBgA4gi5vAAAAWMIRSgCwgTFG6enpkqTY2Fi5XC6HKwKAmkOgBAAbZGVlqVmzZpKYehFA8KHLGwAAAJZwhNIhWVlOVwBUH17fABBcCJQ1zOuVYmOl9HQpO9vpaoDqExt7/PUOAKj/CJQ1LCZGuvdejuCg/vN6j7/eAQD1H4HSATEx/KEFAAD1BxflAAAAwBKOUAKADcLCwjR27Fj/MgAEEz71AMAGERERmj9/vtNlAIAj6PIGAACAJRyhBAAbGGOU9b/DN3i9XqZeBBBUOEIJADbIyspSVFSUoqKi/MESAIIFgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwbBAAQJKUlc/V6ai/eH1XLwIlANggNDRUw4cP9y/XJV63V7HeWKVnpSu7INvpcoBqE+uNldftdbqMeslljDGVuUFRUZF++uknHTx4UC6XS40bN1bHjh0VElK53vMjR44oJiZGGRkZatCgQaVuCwCwV0ZOBkdwUO953V7FeGKcLqNOqWheq/ARyu+//1733Xef3nzzTWVnB36DjYyM1NChQzV9+nR16tSp6lUDABwR44nhDy2AKqtQoNy4caMSExMVERGha665Rj169FDjxo0lSb/99pu+/PJLLV++XG+99ZY+/PBDnXnmmdVaNAAAAGqPCnV5X3jhhcrJydFbb72l6OjoUtscPXpUF198sTwej1avXn3SHdPlDaA+yczMVFRUlCTp2LFj8vl8DlcEANbZ2uW9bt06LV26tMwwKUnR0dG66667NHLkyMpXCwAAgDqrQlfShIWFKTc396Tt8vLyFBbGheMAAADBpEKBMikpSffee69+/fXXMtvs2rVL06dP13nnnWdbcQAAAKj9KnQ4cc6cORowYIBOPfVUnXfeef6Lclwulw4ePKivvvpKH3zwgZo0aaLly5dXd80AAACoRSoUKDt06KDNmzdr9uzZWrFihVavXq3ia3lcLpdOPfVUTZ48WVOnTlVsbGy1FgwAAIDapdIDm0tSTk6ODh06JElq1KiRPB5PpXfMVd4A6hOu8gZQH9k+sPmJPB6PWrZsWeXiAKC+CQ0NVXJysn8ZAIIJl2QDgA08Ho/eeustp8sAAEdUbgJuAAAA4HcIlAAAALCEQAkANsjMzJTP55PP51NmZqbT5QBAjeIcSgCwSVZWltMlAIAjOEIJAAAASywFymnTpun++++3qxYAAADUQVUa2FySdu/erXbt2ikiIkL79u3zD+hbUQxsDqA+YWBzAPVRRfNalY9Qvvrqq4qNjZXb7dayZcuqejcAAACo46ocKF9++WWNGDFCl1xyiRYvXmxnTQAAAKhDqnSV9w8//KAvvvhCjz/+uA4dOqRhw4bpwIEDatq0qd31AUCdEBISooSEBP8yAASTKgXKxYsXq02bNurfv7/y8/MVFRWlJUuW6MYbb7S7PgCoEyIjI7VmzRqnywAAR1Tpa/TixYs1cuRISZLb7dbll1+ul19+2dbCAAAAUDdUOlBu2rRJ27Zt05VXXulfN3LkSK1fv14///yzrcUBAACg9qt0oFy8eLE6duyos88+27/uj3/8o5o0acLFOQCCVmZmppo2baqmTZsy9SKAoFPpQPnKK69o1KhRAetCQ0M1bNgwur0BBLX09HSlp6c7XQYA1LhKBcoffvhBHTt21DXXXFNiW0pKipo0aaJ9+/bZVhwAAABqvyrPlGMVM+UAqE+YKQdAfVTtM+UAAAAAEoESAAAAFhEoAQAAYEmVZsoBAAQKCQlRr169/MsAEEwIlABgg8jISKWlpTldBgA4okJfo9euXatjx45Vdy0AAACogyoUKJOSkrRly5bqrgUAAAB1UIUCpUNDVQJAnZGVlaX27durffv2ysrKcrocAKhRnEMJADYwxujnn3/2LwNAMKnwpYgul6s66wAAAEAdVeEjlElJSRUaCsPlcikjI8NSUQAAAKg7KhwoExMT1bRp0+qsBQAAAHVQhQPlfffdpz59+lRnLQAAAKiDmM4BAAAAljh+lXdmZqZCQ0NLrA8NDZXH4wloV5aQkBBFRkZWqW1WVlaZV2S6XC55vd4qtc3OzlZRUVGZdfh8viq1zcnJUWFhoS1tvV6v/2Kr3NxcFRQU2NI2MjLSf75tXl6e8vPzbWnr8Xj8r5XKtM3Pz1deXl6ZbSMiIhQWFlbptgUFBcrNzS2zbXh4uNxud6XbFhYWKicnp8y2brdb4eHhlW5bVFSk7OxsW9qGhYUpIiJC0vErmssbJqcybSvzvq9tnxEul0udO3cu8zHyGfF/+Iw4js+Iyrety58RlW1bWz4jynsuApgKcLlc5tNPP61I0wrLyMgwksr8SU5ODmjv9XrLbJuQkBDQNjY2tsy2vXr1CmgbFxdXZtsuXboEtO3SpUuZbePi4gLa9urVq8y2sbGxAW0TEhLKbOv1egPaJicnl/u8nWj48OHltj127Ji/7dixY8ttu3//fn/bSZMmldt2+/bt/rZTp04tt+3XX3/tbzt9+vRy227YsMHfdvbs2eW2TU1N9bd96qmnym27atUqf9t58+aV23bJkiX+tkuWLCm37bx58/xtV61aVW7bp556yt82NTW13LazZ8/2t92wYUO5badPn+5v+/XXX5fbdurUqf6227dvL7ftpEmT/G33799fbtuxY8f62x47dqzctsOHDw94DZfXls+I4z98RvzfD58Rx3/4jDj+w2fE8R+7PiMyMjJMeSp0hLK81AsAAIDg5vrfhF/jjhw5opiYGO3evVsNGjQosZ1D1aW3pTuL7iy6syrfls+IqrXlM+I4PiMq35bPiOPqw2fEoUOH1KpVK2VkZJSa1/z1Ox0oT1YgANQFWVlZ6t27tyQpLS0t4A8DANRVFc1rjl+UAwD1gTFGW7Zs8S8DQDBh2CAAAABYQqAEAACAJVXu8s7IyNB3331X6km5AwcOtFQUAAAA6o5KB8qCggLdcMMNWrhwYZlXCZV39RAAAADql0p3eT/22GN688039eKLL8oYo6eeekrPPvusevXqpdNOO03vvPNOddQJAACAWqrSgfKll17SPffco6uuukqS1LdvX1177bX69NNPFRcXp9TUVNuLBIDazuVyKS4uTnFxcf7xGAEgWFQ6UP70008688wz/QPNnjhg6g033KBFixbZVx0A1BFer1c7duzQjh07GIMSQNCpdKD0+XzKy8uTy+VS48aN9fPPP/u3RUZG6uDBg7YWCAAAgNqt0oHyjDPO0Pbt2yVJ/fr106OPPqpff/1V+/fv1+zZs3X66afbXiQAAABqr0pf5T1q1Ch99913kqSZM2dq4MCBiouLk3R8ns/XX3/d3goBoA7Izs72D5m2du3agLl+AaC+szyX9y+//KIVK1bI5XLpggsuqPARSubyBlCfZGZmKioqSpJ07Ngx+Xw+hysCAOuqbS7vnTt3qmXLlnK73ZKktm3b6uabb5Z0fIzKnTt3ql27dlUsGwAAAHVNpc+h7NChgzZu3Fjqts2bN6tDhw6WiwIAAEDdUelAWV4PeWFhIeOvAQAABJlKB0pJpYbG3NxcvfPOO4qNjbVcFAAAAOqOCp1DOXPmTP31r3+VdDxMnnPOOWW2vfbaa+2pDAAAAHVChQJlnz59NGnSJBljNHfuXA0fPlzNmzcPaBMREaHu3btr9OjR1VIoANR29NAACFYVCpQXXXSRLrroIknHh8a47777uPgGAE7g8/l04MABp8sAAEdUetigefPmVUcdAAAAqKMqFCjXrl1bqTstni0CAAAA9V+FAmViYqL/ym5jTJlDAxVvKywstK9CAKgDsrOz/acGvfPOO0y9CCCoVChQpqamVncdAFCnFRUV6cMPP/QvA0AwqVCgTEhIqO46AAAAUEdVaWDzYtu2bdMnn3yizMxMu+oBAABAHVOlQLlw4UK1adNGXbp00cCBA7Vt2zZJ0siRI/Xcc8/ZWiAAAABqt0oHyqVLlyolJUXx8fF66qmnAub2jo+P15IlS2wtEAAAALVbpQPlgw8+qHHjxumNN97QxIkTA7Z17txZW7Zssa04AAAA1H6VDpRbt27VlVdeWeq2xo0b6+DBg5aLAoC6yOv1yuv1Ol0GANS4Ss+U4/V6lZGRUeq2Xbt2qVGjRpaLAoC6xufzcYEigKBV6SOU/fv3L3HuZLH58+crMTHRjroAAABQR1T6COV9992nAQMGqE+fPho9erRcLpdef/11TZ8+XWvXrtWGDRuqo04AAADUUpU+QtmrVy+98847OnbsmKZMmSJjjGbNmqXvvvtOb7/9trp161YddQJArZaTk6MhQ4ZoyJAhysnJcbocAKhRLlNa33UF/fjjj9q3b59iY2PVqVOnSt32yJEjiomJUUZGhho0aFDVEgCgVsjMzFRUVJQk6dixY/L5fA5XBADWVTSvVbrL+0SnnHKKTjnlFCt3AQAAgDquUoHywIEDevbZZ7V27Vrt3r1bktSqVSslJSVp4sSJatKkSbUUCQAAgNqrwl3e77//vq644godOXJEoaGhio2NlTFGBw8eVGFhoRo1aqTly5dr4MCBFdoxXd4A6hO6vAHURxXNaxW6KOfAgQMaNWqUYmJitGTJEmVkZGjPnj3au3evMjIy9Morr8jn82n48OEMbA4AABBkKhQoX3jhBRUWFuqTTz7R8OHDA2aC8Hq9GjlypD7++GPl5+frhRdeqLZiAQAAUPtUKFC+9957Gj9+vNq0aVNmm3bt2mncuHF69913bSsOAAAAtV+FAuXWrVs1YMCAk7b7wx/+oK1bt1ouCgDqGp/PJ2OMjDGcPwkg6FQoUB4+fFjNmjU7abtmzZrp8OHDVmsCAABAHVKhQJmbmyu3233SdmFhYcrLy7NcFAAAAOqOCo9DuW3bNoWFld/822+/tVwQANRFOTk5GjNmjCTppZdeksfjcbgiAKg5FRqHMiQkRC6X66R3ZoyRy+VSYWHhSdsyDiWA+oRxKAHUR7ZOvThv3jzbCgMAAED9UqFAOXbs2OquAwAAAHVUhS7KAQAAAMpCoAQAAIAlBEoAAABYQqAEAACAJRUehxIAUDav16tjx475lwEgmBAoAcAGLpeLsScBBC26vAEAAGAJgRIAbJCbm6uUlBSlpKQoNzfX6XIAoEZVaOrF6sDUiwDqE6ZeBFAfVTSvcYQSAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCTPlAIANvF6v9u/f718GgGBCoAQAG7hcLjVt2tTpMgDAEXR5AwAAwBICJQDYIDc3VzfeeKNuvPFGpl4EEHSYehEAbMDUiwDqI6ZeBAAAQI0gUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBJmygEAG0RGRmr79u3+ZQAIJgRKALBBSEiI2rdv73QZAOAIurwBAABgCYESAGyQl5enadOmadq0acrLy3O6HACoUUy9CAA2YOpFAPURUy8CAACgRhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCTPlAIANIiMj9fXXX/uXASCYECgBwAYhISHq2rWr02UAgCPo8gYAAIAlHKEEABvk5eVp1qxZkqS//OUvCg8Pd7giAKg5TL0IADZg6kUA9RFTLwIAAKBGECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJ41ACgA08Ho82bNjgXwaAYEKgBAAbhIaGqnfv3k6XAQCOoMsbAAAAlnCEEgBskJeXpyeeeEKSNHnyZKZeBBBUmHoRAGzA1IsA6iOmXgQAAECNIFACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASxqEEABt4PB6lpqb6lwEgmBAoAcAGoaGhSkxMdLoMAHAEXd4AAACwhCOUAGCD/Px8/fOf/5QkTZw4UW632+GKAKDmMPUiANiAqRcB1EdMvQgAAIAaQaAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAljEMJADaIiIjQqlWr/MsAEEwIlABgg7CwMA0ZMsTpMgDAEXR5AwAAwBKOUAKADfLz87Vo0SJJ0tVXX83UiwCCClMvAoANmHoRQH3E1IsAAACoEQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwjiUAGCDiIgILVmyxL8MAMGEQAkANggLC9OIESOcLgMAHEGXNwAAACzhCCUA2KCgoEDLly+XJF1++eUKC+PjFUDw4BMPAGyQm5urkSNHSjo+9SKBEkAwocsbAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCeNaAIANwsPDNW/ePP8yAAQTAiUA2MDtdislJcXpMgDAEXR5AwAAwBKOUAKADQoKCrR69WpJ0qBBg5gpB0BQ4RMPAGyQm5uriy++WBJTLwIIPnR5AwAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALGFcCwCwQXh4uJ566in/MgAEEwIlANjA7XbrxhtvdLoMAHAEXd4AAACwhCOUAGCDwsJCffTRR5KkP/zhDwoNDXW4IgCoOQRKALBBTk6OkpKSJB2fetHn8zlcEQDUHLq8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljBsEADYwO12a/bs2f5lAAgmLmOMcWLHR44cUUxMjDIyMtSgQQMnSgAAAEA5KprX6PIGAACAJXR5A4ANCgsL9cUXX0iS4uPjmXoRQFAhUAKADXJyctSnTx9JTL0IIPjQ5Q0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEYYMAwAZut1vTp0/3LwNAMGHqRQAAAJSKqRcBAABQI+jyBgAbFBUVaevWrZKkzp07KySE7+sAggeBEgBskJ2drW7dukli6kUAwYev0AAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsYNggAbOB2uzV16lT/MgAEE6ZeBAAAQKmYehEAAAA1gi5vALBBUVGRdu7cKUlq164dUy8CCCoESgCwQXZ2tjp06CCJqRcBBB++QgMAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh2CAAsEFYWJgmTZrkXwaAYMKnHgDYICIiQv/4xz+cLgMAHEGXNwAAACzhCCUA2MAYo/T0dElSbGysXC6XwxUBQM0hUAKADbKystSsWTNJTL0IIPjQ5Q0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEYYMAwAZhYWEaO3asfxkAggmfegBgg4iICM2fP9/pMgDAEXR5AwAAwBKOUAKADYwxysrKkiR5vV6mXgQQVDhCCQA2yMrKUlRUlKKiovzBEgCCBYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCeNQAoANQkNDNXz4cP8yAAQTAiUA2MDj8Wjp0qVOlwEAjqDLGwAAAJYQKAEAAGAJgRIAbJCZmSmXyyWXy6XMzEynywGAGkWgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMJMOQBgg9DQUCUnJ/uXASCYECgBwAYej0dvvfWW02UAgCPo8gYAAIAlBEoAAABYQqAEABtkZmbK5/PJ5/Mx9SKAoMM5lABgk6ysLKdLAABHcIQSAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWcJU3ANggJCRECQkJ/mUACCYESgCwQWRkpNasWeN0GQDgCL5GAwAAwBICJQAAACwhUAKADTIzM9W0aVM1bdqUqRcBBB3OoQQAm6SnpztdAgA4giOUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhKu8AcAGISEh6tWrl38ZAIIJgRIAbBAZGam0tDSnywAAR/A1GgAAAJYQKAEAAGAJgRIAbJCVlaX27durffv2ysrKcrocAKhRnEMJADYwxujnn3/2LwNAMOEIJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALOEqbwCwgcvlUpcuXfzLABBMCJQAYAOv16tvvvnG6TIAwBF0eQMAAMASAiUAAAAsIVACgA2ysrLUtWtXde3alakXAQQdzqEEABsYY7Rlyxb/MgAEE45QAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEq7yBgAbuFwuxcXF+ZcBIJgQKAHABl6vVzt27HC6DABwBF3eAAAAsIRACQAAAEsIlABgg+zsbPXu3Vu9e/dWdna20+UAQI3iHEoAsEFRUZE+++wz/zIABBOOUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBKu8gYAm8TGxjpdAgA4gkAJADbw+Xw6cOCA02UAgCPo8gYAAIAlBEoAAABYQqAEABtkZ2crMTFRiYmJTL0IIOhwDiUA2KCoqEgffvihfxkAgglHKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAlXeQOATbxer9MlAIAjCJQAYAOfz6fMzEynywAAR9DlDQAAAEsIlAAAALCEQAkANsjJydGQIUM0ZMgQ5eTkOF0OANQozqEEABsUFhbq7bff9i8DQDDhCCUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxx7CpvY4wk6ciRI06VAAC2OXGWnCNHjnClN4B6oTinFee2sjgWKI8ePSpJatu2rVMlAEC1aNWqldMlAICtjh49qpiYmDK3u8zJImc1KSoq0u7duxUdHS2Xy+VECQAAACiHMUZHjx5Vq1atFBJS9pmSjgVKAAAA1A9clAMAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACcARn376qS6//HK1a9dOERERat68uc4991xNmTIloN3cuXM1f/78Ct/vmjVr5HK5tGbNmnLbzZ8/Xy6Xy/8TFhamli1b6sorr9T3339fhUd03KxZs7RixYoq1+WUe+65Rz179lTjxo3l8XjUsWNHTZw4UT///LPTpQGoAwiUAGrcW2+9pX79+unIkSOaPXu23nvvPT3xxBPq37+/Xn311YC2lQ2UlTVv3jytW7dO//nPf3TTTTfpjTfe0IABA3To0KEq3V9ZgTI+Pl7r1q1TfHy8xYqrx+HDh3XVVVdpwYIFevfddzV16lStWrVKffv21cGDB50uD0At59jA5gCC1+zZs9WhQwetXr1aYWH/9zF05ZVXavbs2TVaS7du3dSrVy9JUmJiogoLCzV9+nStWLFC48aNs20/DRo00DnnnGPb/UnStm3bdPrpp9tyX//4xz8C/p+YmKgOHTooOTlZK1eu1Pjx423ZD4D6iSOUAGrcwYMHFRsbGxAmi504cG779u31zTff6MMPP/R3Tbdv396//dtvv9XgwYPl9XoVGxurG264wT8LV1UVh8t9+/b51+Xk5GjKlCk666yzFBMTo8aNG+vcc8/VypUrA27rcrmUmZmpBQsW+OtNTEyUVHaX9xtvvKFzzz1XXq9X0dHRuuCCC7Ru3boK1XrGGWfo7LPP1iOPPKJff/216g+6DE2bNpWkUn9PAHAiAiWAGnfuuefq008/1S233KJPP/1U+fn5pbZbvny5OnbsqJ49e2rdunVat26dli9fLul44EtISNDXX3+tuXPn6qWXXtKxY8d00003Wapt+/btkqROnTr51+Xm5uq3337T1KlTtWLFCi1evFgDBgzQsGHDtHDhQn+7devWKTIyUsnJyf56586dW+a+Xn75ZQ0dOlQNGjTQ4sWL9cILL+jQoUNKTEzUxx9/fNJa//3vf6tnz5568MEH1a5dOyUkJOiZZ55Renp6lR9/QUGBsrOztXHjRt16663q1KmThg0bVuX7AxAkDADUsPT0dDNgwAAjyUgybrfb9OvXzzz44IPm6NGjAW27du1qEhISStzHnXfeaVwul9m0aVPA+gsuuMBIMqmpqeXWMG/ePCPJrF+/3uTn55ujR4+ad99917Ro0cIMHDjQ5Ofnl3nbgoICk5+fbyZMmGB69uwZsM3n85mxY8eWuE1qampAXYWFhaZVq1ame/fuprCw0N/u6NGjplmzZqZfv37l1n+ivLw8s2rVKnPNNdeY6OhoExYWZpKTk81LL71U4vksz549e/y/E0mmb9++ZteuXRW+PYDgxRFKADWuSZMm+uijj5SWlqaHHnpIQ4cO1Xfffae7775b3bt3r9ARttTUVHXt2lVnnnlmwPrRo0dXqpZzzjlHbrdb0dHRGjx4sBo1aqSVK1eW6OZdunSp+vfvr6ioKIWFhcntduuFF17Q1q1bK7W/Ytu2bdPu3bs1ZsyYgG7+qKgoXXHFFVq/fr2ysrIqdF9ut1tDhgzRSy+9pP379+uVV16Rz+fTxIkT1axZMy1durRC9xMbG6u0tDR9/PHHeu655/Tbb78pKSlJe/bsqdJjBBA8CJQAHNOrVy/deeedWrp0qXbv3q3bbrtNO3bsqNCFOQcPHlSLFi1KrC9tXXkWLlyotLQ0ffDBB7r++uu1detWXXXVVQFtXn/9dY0cOVKtW7fWv/71L61bt05paWkaP368cnJyKrW/E+uXpJYtW5bY1qpVKxUVFVXpSvPs7GxlZGQoIyND+fn58vl88ng8FbptWFiYevXqpf79++vaa6/VBx98oJ9++kkPPfRQpesAEFw40xpAreB2uzV9+nQ99thj+vrrr0/avkmTJtq7d2+J9aWtK0/nzp39F+IkJSWpsLBQzz//vF577TUNHz5ckvSvf/1LHTp00KuvviqXy+W/bW5ubqX29fv6JZV69G/37t0KCQlRo0aNKnRfR48e1cqVK/XKK6/ovffeU0REhIYOHaqVK1fqwgsvrPJFNW3atFGrVq303XffVen2AIIHRygB1LiyulCLu49btWrlXxcREaHs7OwSbZOSkvTNN99o8+bNAetffvllS7XNnj1bjRo10n333aeioiJJx6/eDg8PDwiTe/fuLXGVd3n1/t7pp5+u1q1b6+WXX5Yxxr8+MzNTy5Yt81/5XZ5XX31Vw4YNU7NmzTRhwgSFhob6u73/9a9/KTk52dIV2j/88IN+/fVXnXrqqVW+DwDBgUAJoMYNGjRIycnJevrpp5Wamqr3339fc+bM0bBhwxQVFaXJkyf723bv3l2bN2/Wq6++qrS0NH311VeSpFtvvVWxsbEaMmSI5s+fr3feeUfXXHONvv32W0u1NWrUSHfffbe2bt3qD6cXX3yxtm3bpkmTJumDDz7QggULNGDAgFK7q7t37641a9bozTff1GeffaZt27aVup+QkBDNnj1bmzZt0sUXX6w33nhDS5cuVVJSkg4fPlyhbubRo0fr8OHD+vvf/659+/Zp5cqVGjVqlCIjIyv1mL/88kudf/75evrpp7V69Wr9+9//1qOPPqqkpCQ1adJEU6dOrdT9AQhCTl8VBCD4vPrqq2b06NHmtNNOM1FRUcbtdpt27dqZMWPGmC1btgS03bFjh7nwwgtNdHS0kWTi4uL827Zs2WIuuOAC4/F4TOPGjc2ECRPMypUrK3WVd1paWolt2dnZpl27dua0004zBQUFxhhjHnroIdO+fXsTERFhOnfubJ577jkzffp08/uP0U2bNpn+/fsbr9drJPmvUP/9Vd7FVqxYYfr27Ws8Ho/x+Xzm/PPPN5988kmFnsfdu3dXqN3J7N2711xzzTXmlFNOMV6v14SHh5uOHTuaG264wezcudOWfQCo31zGnNDXAgAAAFQSXd4AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALDk/wPRHBrnakZgnAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Event 5: Swallow\n", "Start time: 89.674 sec, End time: 91.159 sec\n", "left std ratio: 1.318, right std ratio: 4.252\n", "LM_max_index: 90.611, LL_max_index: 90.832, left delta t: -0.221\n", "RM_max_index: 90.851, RL_max_index: 90.176, right delta t: 0.675\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRgUlEQVR4nO3deXgUVd728buTdJLuJIQlrCIJuLILsolIElcMKi4sijoEcNQBHRdAnfFRYBxQGVBxwXFQARVREAHFBefRAC6oUVlUEBVBZCcIAdLZc94/eNMPbRaSVCWVpL+f68plWX2669ed7ubOOVXnuIwxRgAAAEAVhThdAAAAAOo2AiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlgtbKlSvlcrk0adIkp0upE8p6vRISEpSQkOBITWVJTU2Vy+XStm3bnC6l1po7d65cLpfmzp1b7cfis+aMsl73pKQkuVwuZ4pCvUWgRKVt27ZNLpdLLpdLJ510kgoLC0tt9+233/rbnXnmmTVcZe3h8/k0c+ZMJScnq2nTpnK73WrcuLH69eunRx55RPv373e6xDqnJsOQ3T766CP/52L58uVOlxOUil//0n4eeeSRSj3W9u3bNWbMGJ122mmKjIxUdHS02rVrp4EDB+rRRx9VVlZWNT0LoHYJc7oA1F1hYWHatWuXVqxYoZSUlBK3v/DCCwoLC1NBQYED1dUO69ev16BBg/Trr78qPj5eV1xxhZo3b67Dhw/r888/19/+9jc9/PDD2rVrl6Kiopwut0o+/PBDp0so4eGHH9Z9992nk046yelSSnjxxRclHQs1L7zwgi677DKHK6p+vXr10qZNmxQXF+d0KX7x8fFKTU0tsb9fv34Vfoz169crKSlJhw4d0rnnnqtLL71U4eHh2rp1q7766iu9++67uuaaa3TqqafaWDlQOxEoUWV9+/bV+vXr9eKLL5YIlHl5eZo/f75SUlL01ltvOVShs3bs2KGLL75YGRkZmjFjhu644w6FhoYGtFm7dq1uu+025efnO1SldaeccorTJZTQsmVLtWzZ0ukySjh06JDefPNN9erVS5GRkVq+fLn27t2r5s2bO11atfJ6vbVulCIhIcHyEPzdd9+tQ4cO6aWXXtKNN95Y4vY1a9bUqhANVCeGvFFlHo9Hw4YN09tvv62MjIyA29566y1lZGRo5MiRpd63vHPcJk2aJJfLpZUrVwbsX7x4sRITE9WsWTNFRkbq5JNP1oABA7R06dISj7FhwwbdcMMNat26tSIiItSyZUsNGDBAb7/9doWe2759+3TXXXfp1FNPVUREhOLi4nTNNdfou+++q9D9Jen+++/Xvn379Pe//1133313iTApSd26ddOqVavUoEGDgP3Lly9XcnKyYmNj5fF4dNZZZ+mJJ54o8/SCirYvPl0hNTVVP/zwg66++mrFxcUF/C6ys7N133336eSTT1ZkZKQ6deqk2bNnl/k8SzuH8vjf4cKFC9W9e3d5PB61bNlSf/3rX5WdnR3QPi8vT0899ZQuueQSnXzyyYqIiFCzZs109dVXa+3atQFtU1NT/e+rkSNHBgxXHt+mrPfXvHnz1KdPH0VHRys6Olp9+vTRvHnzSrQ7/vyzb775RpdccoliYmIUGxurq666qkrnZ7766qvKzs7WjTfeqD/96U8qKCjQSy+9VGrb45/DrFmz1L59e0VGRio+Pl6TJ09WUVFRQPvMzEw9+uijSkxMVKtWrRQeHq5WrVrpT3/6k7Zs2XLC2o4cOaKYmBh17Nix1NsLCwvVqlUrNW3aVHl5eZKknJwczZgxQ127dlVsbKyio6N1yimn6LrrrtO3337rv29Z5/L99NNPGjlypNq2bavIyEjFxcWpe/fuGjdu3AnrrQ3WrFmjhg0blhomJemcc85Rw4YNJUlFRUVq3LixzjrrrIA2+/fvV0hIiFwulz755JOA24YNGyaXy6W9e/dKqtznpCoKCgr0+OOPq2vXrvJ4PIqNjVVycrLeeeedgHbr1q2Ty+XSnXfeGbB/0aJFcrlcioqK8r9HirVo0ULt27e3XCNqLwIlLBk1apS/N/J4L774opo1a2bbcN6zzz6rwYMH66efftJVV12lu+++WxdeeKF+++23EoFyyZIl6tWrlxYuXKjevXtr3LhxGjhwoHbu3KkXXnjhhMfasmWLzj77bM2cOVOnnnqqbr/9dqWkpOj9999Xnz599MUXX5zwMXw+n1577TV5PB6NHz++3LZhYWEKCfm/j+LMmTN1+eWXa8OGDRo+fLjGjh2r7Oxs3XXXXRo6dKiMMQH3r2x7Sfr555/Vp08f7d27VyNGjFBqaqrCw8NVVFSkK664Qo8++qgaNWqkO+64Q3369NFdd92lGTNmnPB5/9EzzzyjUaNGqX379vrLX/6iRo0a6amnntJNN90U0O7333/XnXfeqdzcXKWkpOiuu+5SUlKS3n33XfXt21fp6en+tldeeaUGDRokSRo0aJAmTpzo/zmRu+66S6mpqdqxY4dGjx6tm266STt37lRqaqruvvvuUu/z1Vdf6bzzzlNYWJhuueUW9ejRQ0uXLtWFF16onJycSr0eL7zwgtxut6699loNGTJEHo/nhO/JCRMmaOLEierTp49uueUWSccC+wMPPBDQbtOmTXrwwQfl8Xh01VVX6c4771SPHj306quvqlevXvr111/LPU5MTIyuu+46bdy4UZ999lmJ29955x3t3r1bI0aMUHh4uCRpxIgR/vf3yJEjNXbsWPXq1UtpaWn6+uuvyz3erl271KtXL82fP19nnXWW7rzzTl177bVq2rSpnnrqqXLva4dDhw7p+eef19SpUzV79mz99NNPZbYt/gPpj4G4cePGOnr0qPbs2XPC44WEhCgxMVEbNmzQgQMH/PtXrlzp/4ympaUF3GfVqlVq3769vwe7Mp+TyjLGaNiwYbr77ruVk5OjsWPHavjw4dqwYYMuu+wyPfnkk/62Xbt2VePGjUvUW9wJ4PP5Ar4nN23apL179yo5ObnK9aEOMEAlbd261Ugyl1xyiTHGmI4dO5ouXbr4b9+xY4cJDQ0148aNM8YYI8mcccYZAY8xYsQII8ls3bq1xONPnDjRSDJpaWn+fd27dzfh4eFm3759JdpnZGT4t/fu3Wuio6NNVFSU+eabb0q0/e233/zbaWlpRpKZOHFiQJu+ffuasLAw88EHHwTs37x5s4mJiTGdO3cu8bh/tHLlSiPJ9OvX74Rtj7dlyxYTFhZmmjVrZrZv3+7fn5ubaxITE40k8/LLL1e5ffHvTpJ54IEHShx/zpw5RpIZMGCAKSgo8O/fsGGDCQ8PL/X1io+PN/Hx8QH7in+HsbGx5ocffvDv9/l85vTTTzcul8vs3LnTvz8nJ8fs2LGjRD3fffediY6ONhdeeGGpdc6ZM6fEfYwp/f21evVqI8m0b9/eHDp0yL//0KFD5swzzzSSzMcff+zfX/z+kGRee+21gMe/8cYbjSSzYMGCUo9fmrVr1xpJ5oorrvDvu+6664wk88knn5T5HNq2bWt27drl379//37TsGFDExMTY3JzcwOex4EDB0o8zkcffWRCQkLMTTfdFLC/tNcwPT3dSDIjR44s8ThXXHGFkWQ2bdrkP57L5TI9evQIeK8YY0xBQYE5ePCg//9L+6w9+eSTRpKZOXNmiWPt37+/xD47Ff9ej/9xuVzmhhtuMFlZWSXaF7+f//jev/POO40kc8opp5gZM2aYL7/80mRnZ5d53JkzZxpJZvHixf59f/nLX0zDhg1N9+7dTXJysn//999/bySZMWPG+PdV9nNS1ndc8XfD8V566SUjySQmJga8r3777TfTrFkz43a7zS+//OLff9VVVxmXyxXwu2rfvr1JSkoyoaGhZvLkyf79zzzzjJFkFi5cWOZrg7qPHkpYNnLkSG3YsMHfIzF37lwVFhZq1KhRth7H7XbL7XaX2N+kSRP/9rx583T06FGNGzdO3bp1K9G2devW5R5j7dq1+uyzzzRixAhddNFFAbedfvrp+vOf/6xvv/32hEPfxT0WJzreH82fP18FBQUaN26cTj75ZP/+8PBw/9Wnx1/ZXNn2xVq0aKH/+Z//KbG/ePh1ypQpAUP0nTt3LnNYrzx33HGHzjjjDP//ezweXXfddTLGBPRgRURElHoBTceOHZWcnKzVq1dbPs+0+HWYNGmSYmNj/ftjY2P9vZulvVb9+/fXsGHDAvYVv7cr0yNU3BN5/Ov4pz/9KeC20jzwwAMB54PGxcVp0KBBOnLkiDZv3hzwPBo3blzi/snJyerYsaP+93//94Q19ujRQ927d9fChQt15MgR//49e/bo3XffVb9+/fznQrpcLhljFBERUeJ0jtDQUP9Q74l4PJ4S+6r7vMPx48friy++0O+//66DBw/qo48+Uu/evfXKK69o9OjRJdrfdttt2rRpk2677baA/VOnTtWf/vQnbd26VePGjVOvXr0UHR2ts88+W//85z916NChgPZJSUmSjl3pXywtLU2JiYm68MILtWbNGn+vd3HvX/F9pOr9nBS/96dNm+bvgZaOfYfdddddys/PDxiJSkpKkjHG3yu5d+9ebdq0SYMGDdLZZ59d4jlKUmJiYpVqQ91AoIRlN954o9xut//q1blz56p3797q0KGDbccYOnSosrKy1KlTJ40fP17Lly8v8WUtSV9++aUk6eKLL67ScT7//HNJx/4BnTRpUomfH374QZL8/7Vb8XlQx/8jUqxPnz7yeDxat25dldsX69q1a8A/GsXWr18vr9er7t27l7jtvPPOq9iTOE5pj1Mcsv/4+1u3bp2GDx+uNm3aKDw83H9e5Ntvv628vLwS5+lWVnmvVfG+0l6ryjyHsuTm5mr+/Plq2LChLr/8cv/+iy66SC1bttTChQt19OjRUu9bmeOvXLlSV155pVq2bCm32+1/Db/99lvt2rWrQrXecsstysrK0oIFC/z75s6dq4KCgoBTFRo0aKABAwbo008/Vffu3TV16lR9/PHHJc6dK8tll10mr9ersWPHaujQoXrxxRf1448/Vui+0rHf1R8/nxWdRupf//qXevXqpUaNGqlhw4ZKTk7Whx9+qFNPPVWvvfaavv/++4D2cXFxOvPMM0sEXY/Ho3nz5unXX3/Vc889p9GjR6tDhw765ptv9MADD6hz58765Zdf/O07d+6suLg4f8Das2ePfvjhByUnJys5OVk5OTlas2aNpGMhzOVylXi/VtfnZO3atfJ4POrVq1eJ20r7fBQPXxc/l+L/Fj+Xzz//XDk5OTLGaNWqVerYsaOaNWtWpdpQN3CVNyxr1qyZUlJStGDBAl1xxRX6+eefT3jeYGXdc889atKkif7973/rscce04wZMxQWFqaUlBQ98cQTatu2raT/+we2qtPF/P7775KOnS/2xxPRj3eiueVatGghSdq5c2eljn/48GFJKvOq32bNmgU8ZmXbFyurfWZmZkBPZ0XuU57jewKLhYUd+9o5/oKhzz77TOeff76kY38MnHbaaYqOjpbL5dLSpUu1fv165ebmVvr4xzt8+LBCQkLUtGnTErc1b95cISEhyszMrPJzKM+SJUt08OBB/fnPf1ZERIR/f2hoqK6//npNnz5dr7/+eqm9YxU9/qJFizRs2DBFR0frkksuUUJCgrxer3++zhOdQ1ls+PDhGjdunJ5//nndfPPNko6dEx0bG6shQ4YEtH3jjTc0depULViwQPfff7+kY+dijho1SlOnTpXX6y3zOG3bttWaNWs0efJkvffee1q0aJEk6YwzztBDDz1U4lh/tG7dOk2ePDlgX2JiYqlTAVWE1+vVddddp4ceekiffvppmRcnlaZ169a6+eab/a/Xli1bNGrUKK1evVp33XWXli1bJulYr25iYqIWL16svXv3BoSwdu3aKSwsTGlpaUpKSvKHsOPfr9X5OTl8+HCZn/3i77PjPx+dOnVS06ZNAwJlkyZN1KVLF+3Zs0ePPvqoPvvsMzVt2lT79+8v0cuP+odACVuMGjVKy5Yt0+jRo/3DmuUpvgiltDkqS/tH3eVy6aabbtJNN92kAwcO6OOPP9aCBQu0cOFC/fTTT/r2228Dhtl27txZpdVbiq+2fuqpp0oMb1VGz549FR4erq+++kqHDx8ucRX3iY6/d+9excfHl7h93759AY9V2fbFylolIzY2Vvv27Sv1tuIrTavDlClTlJubq08++UTnnntuwG2ff/651q9fb/kYDRo0UFFRkfbv31+ip2Tfvn0qKiqq8O+psoqHtGfPnl3mFfMvvPBCqYGyoiZNmqTIyEh9/fXXOu200wJue+211yr8ONHR0Ro+fLj+85//aMOGDfr999/1008/acyYMSUCYlRUlKZMmaIpU6Zo69atSktL07///W/NnDlT2dnZeu6558o9VpcuXbR48WLl5+fr66+/1nvvvacnn3xSw4YNU6tWrUq8F46Xmppa5fBYluIeSJ/PZ+lxTjnlFM2dO1ft2rULGPqVjoXHxYsXa+XKlVq5cqXi4uLUuXNnuVwu9ezZU2lpaRoyZIgyMjJKfI9W5+ekQYMGZX7Gi/cf//koDsdvvPGG9uzZo5UrVyoxMVEul0v9+vWT2+1WWlqa/7PGBTn1H0PesEVKSopatGihnTt36pprrjnhP8yNGjWSVHoP3ommv2jSpImuvPJKvf766zr//PO1adMm/fzzz5LkH6754IMPqvI01Lt3b0nyDztVldfr1bXXXqvs7OwTXh1dUFDgnwKm+LzPP06ZJB0bzs/Ozg6YdqSy7U+ka9eu8vl8+uabb0rc9vHHH1f4cSpry5Ytaty4cYl/JMuqpficvYr2EErlv1arVq2SpEq9VhW1bds2ffjhh2revLlGjx5d6k+bNm20Zs0abdq0qcrH2bJli9q3b18iTO7atatC0wYdr/hq8ueff94fhv94Zf4ftW3bVqNGjdKqVasUHR1dqfln3W63+vTpo8mTJ+vJJ5+UMcaRVYSKr0y2YynRshYqOP48yuLeyOI/8M4//3x98cUX/uf+x+Huyn5OKqNbt27Kzs72nzZ0vLI+H8X1zZ8/Xz/++KO/9zQqKkq9evXyP8fi8In6jUAJW4SFhemtt97SkiVLNGXKlBO279Gjh6SSF0G88cYb/i+v461YsaJEb2Z+fr5/iLr4xP4RI0YoOjpaM2bMKPV8uBMNQffq1Uu9e/fWggUL9Prrr5e4vaioqNT6SjNlyhQ1bdpUU6ZM0ZNPPlli3kDp2HyZSUlJ/qHr4cOHKywsTI899ljAOW/5+fm67777JCmgV6ay7U+k+IKR+++/PyCsffvtt3r55Zcr/DiVFR8fr4MHDwacu1ZYWKjx48eXujRl8cUnO3bsqPAxRowYIUmaPHmy//WWjg31FQ+dFrex05w5c2SM0a233qrnn3++1J/ieRcrMq1VWeLj4/Xzzz8H9DLl5OToL3/5S6VXq+revbvOPvtsvfLKK1q8eLHOPvvsEhe57d+/v9TwcfDgQeXm5pZ6sc3x0tPTS+0NL67/RPevqrVr15baA7lo0SItWLBAcXFxuvDCCwNuy8jI0A8//FDi/MR//OMf+u2330o8ljFGDz/8sKSSK+8Un0u4ZMkS/fTTTwE9d8nJycrPz9fjjz9eagir7OekMorf+3/7298CLuzZuXOnHnvsMYWFhen6668PuE9x7Y8++mjA/xdvp6enKy0tTZ07dw64eBL1E0PesE3Pnj3Vs2fPCrW98sor1bZtW82dO1e//fabunXrpk2bNumjjz5SSkqK3n333YD2w4YNk9frVb9+/RQfH6/8/Hz997//1caNGzVs2DC1adNG0rFzBl966SVde+216tWrl6644gqdccYZysjI0BdffKGEhIRSJ0I/3oIFC5ScnKxrr71WTzzxhM4++2xFRkZq+/btWrNmjfbv31+h+Qdbt26tDz74QFdeeaXuuOMOPf7447rgggv8Sy9++eWXSk9PV4MGDfxXr59yyil69NFHNW7cOHXp0kVDhw5VVFSUli9frh9++EGDBg3SDTfc4D9GZdufyIgRI/Tqq6/q/fffV7du3XTppZfq999/14IFC3TxxRdXW6/R7bffrg8++ED9+vXT0KFDFRkZqZUrV2rnzp1KSkoq0at4zjnnyOPx6IknntDhw4f955kVh+jS9O/fX7fffrueeuopderUSddcc42MMXrzzTf122+/6a9//av69+9v6/MqKiryrzteXrC//vrrNWHCBL388st6+OGHS53N4ERuv/123X777erWrZsGDx6sgoIC/fe//5UxRl27dq30cOgtt9ziPyewtN7JnTt3qnfv3urYsaO6d++uk046SQcOHNCyZcuUn5+ve+65p9zHnz9/vmbNmqWkpCSdeuqpatCggTZu3Kh3331XcXFxts8SUWzmzJlaunSpLrjgArVp00bGGH3zzTf6+OOPFRkZqXnz5ik6OjrgPk8//bQmT56siRMnBsxF+dhjj2nSpEnq0aOHzj77bDVu3FgHDhzQRx99pJ9++klNmjQpdYQiKSlJCxculBQYwvr27auIiAjt379fXbt2LRHCKvs5qYwbb7xRb775ppYtW6YuXbrosssuU1ZWlhYuXKgDBw5oxowZateuXcB9OnTooObNm/tXezr+Qszk5GT/le7V8YcaaiGn5itC3fXHeShPRKXMQ2mMMb/88osZNGiQiYmJMVFRUeaCCy4w6enppc5DOWvWLHPFFVeY+Ph4ExkZaZo0aWJ69+5tnnvuOZOfn1/isdeuXWuGDh1qmjdvbtxut2nZsqW59NJLzfLly/1typqjzRhjfv/9d/M///M/plOnTsbj8Zjo6Ghz2mmnmeHDh5s333yzQs+7WFZWlnniiSdMYmKiiYuLM2FhYaZhw4bmnHPOMf/85z8D5tEstmzZMpOYmGhiYmJMRESE6dy5s5kxY0apz7Uy7Yt/dyNGjCi33nvuucecdNJJJiIiwnTo0ME899xzZb5e5c1DefzvsFhZc0i+8cYbpnv37sbr9Zq4uDgzdOhQs2XLljLnLH3nnXdMz549jcfj8c8lWKy8eU5ffPFF07NnT+P1eo3X6zU9e/Y0L774Yol25b0/KvI6GmPM+++/bySZCy64oNx2xhhzzTXXBMxRWNm5WouKisy///1v07FjRxMZGWlatGhhRo8ebfbu3VvqvIMnmsvzyJEjxu12G6/XazIzM0vcfvDgQTNp0iTTv39/07JlSxMeHm5atWplBgwYYFasWBHQtrTX8vPPPze33HKL6dSpk2nYsKHxeDzmtNNOM3/9618D5lS125tvvmkGDRpkEhISjNfrNeHh4aZt27Zm9OjR/jk2/6iseShXr15t7rvvPnPOOeeYVq1aGbfbbaKjo02XLl3M+PHjA+YPPd6zzz5rJJnmzZuXuK1///5GkrnjjjtKvW9lPieVmYfSGGPy8/PN9OnTTefOnU1ERISJiYkxiYmJZtmyZaXWYowxw4YNM5LMsGHDAvZnZ2ebiIgII8ksWbKkzPuj/nAZU8oyGgCAoPbll1+qd+/eGjlypH9KMAAoC+dQAgBKmD59uiTp1ltvdbgSAHUB51ACACRJ27dv16uvvqrvv/9eixYt0oABA0qd6BoA/oghbwCApGNTKiUnJys6Olrnn3++nnvuOf+k1gBQHgIlAAAALOEcSgAAAFji2DmURUVF2rVrl2JiYspcBg4AAADOMcboyJEjatWqlX/Z5NI4Fih37dpV5kL0AAAAqD1+++03tW7duszbHQuUMTExko4VeKJ1nwGgtsvKylKrVq0kHfuDuay1nAGgLjl8+LBOPvlkf24ri2OBsniYu0GDBgRKAHVeaGiof7tBgwYESgD1yolOT+SiHAAAAFhCoAQAAIAlBEoAAABYUquXXiwqKlJeXp7TZdQLbrc74BwvAAAAu9TaQJmXl6etW7eqqKjI6VLqjYYNG6pFixbM+wkAAGxVKwOlMUa7d+9WaGioTj755HIn0sSJGWPk8/m0b98+SVLLli0drgiof0JDQ5WSkuLfBoBgUisDZUFBgXw+n1q1aiWv1+t0OfWCx+ORJO3bt0/NmjXjHzzAZpGRkXrnnXecLgMAHFEru/4KCwslSeHh4Q5XUr8Uh/P8/HyHKwEAAPVJrQyUxTjXz168ngAAoDrU6kAJAHVFVlaWoqKiFBUVpaysLKfLAYAaVSvPoSxLZqbk89Xc8bxeKTa25o4HoG7z1eQXFADUInUmUGZmSg89JGVk1Nwx4+KkBx6omVBpjNEtt9yiN954QwcPHtTatWt11llnVf+BAQAALKozgdLnOxYmPZ5jPYc1dTyfr+KBMjU1VYcOHdLSpUsrfbz3339fc+fO1cqVK9WuXTvFxcXJ5XJpyZIluvLKKyv9eAAAADWlzgTKYl6vFBNTM8fKzq6Z40jSli1b1LJlS/Xt27fmDgoAAGADLsqpIRs3blRKSoqio6PVvHlz3Xjjjcr4/+P3qampuv3227V9+3a5XC4lJCQoISFBknTVVVf59wEAANRGBMoasHv3biUmJuqss87SV199pffff1979+7V0KFDJUkzZ87UP/7xD7Vu3Vq7d+9Wenq60tPTJUlz5szx7wMAAKiN6tyQd1307LPPqnv37po6dap/34svvqiTTz5ZP/74o04//XTFxMQoNDRULVq0CLhv8frbAGq3kJAQJSYm+rcBIJgQKGvA119/rbS0NEVHR5e4bcuWLTr99NMdqAqAnTwej1auXOl0GQDgCAJlDSgqKtLll1+uRx99tMRtLVu2dKAiAAAA+xAoa0D37t21ePFiJSQkKCys4i+52+32r2sOAABQW9W5QFlTC1FU9TiZmZlat25dwL5bbrlFs2fP1nXXXacJEyYoLi5OP//8s1577TXNnj1boaGhpT5WQkKCPvzwQ5177rmKiIhQo0aNqlYUgGqXlZXln41h27ZtioqKcrYgAKhBdSZQer3HVq7JyKi5+SHj4io/ifrKlSvVrVu3gH0jRozQp59+qnvvvVeXXHKJcnNzFR8frwEDBpR78v6MGTN09913a/bs2TrppJO0bdu2KjwLADUloyaX8gKAWsRljDFOHPjw4cOKjY1VZmamGjRoEHBbTk6Otm7dqrZt2yoyMtK/n7W8rSnrdQVgXVZWlv/Cu6NHj9JDCaBeKC+vHa/O9FBKx8JdfQp4AAAA9QGTpQEAAMASAiUAAAAsIVACAADAkjp1DiUA1FYhISHq0aOHfxsAggmBEgBs4PF4lJ6e7nQZAOAI/owGAACAJQRKAAAAWFKnhrwzczLly6+5mc29bq9iI5n4EsCJ+Xw+dejQQZK0ceNGeSu7zBYA1GF1JlBm5mTqodUPKcNXc0ubxXnj9ED/B2wNlS6XS0uWLNGVV15ZofYrV65UcnKyDh48qIYNG9pWBwB7GWP066+/+rcBIJjUmUDpy/cpw5chT5hHXnf1/+VffDxfvq/CgTI1NVXz5s2TJIWGhqpVq1YaOHCgpk6dqkaNGkmSdu/e7d+2y6RJk7R06VKtW7fO1scFAACoiDoTKIt53V7FRMTUyLGyC7IrfZ8BAwZozpw5Kigo0MaNGzVq1CgdOnRICxYskCS1aNHC7jIBAAAcxUU5NouIiFCLFi3UunVrXXzxxRo2bJg++OAD/+0ul0tLly71//9nn32ms846S5GRkerRo4eWLl0ql8tVorfx66+/Vo8ePeT1etW3b19t3rxZkjR37lxNnjxZ69evl8vlksvl0ty5c2vgmQIAABxDoKxGv/zyi95//3253e5Sbz9y5Iguv/xyde7cWd98840eeugh3XvvvaW2vf/++zVjxgx99dVXCgsL06hRoyRJw4YN07hx49SxY0ft3r1bu3fv1rBhw6rtOQEAAPxRnRvyru2WL1+u6OhoFRYWKicnR5L02GOPldp2/vz5crlcmj17tiIjI9WhQwft3LlTf/7zn0u0nTJlihITEyVJ9913nwYOHKicnBx5PB5FR0crLCyM4XQAAOAIAqXNkpOT9eyzz8rn8+n555/Xjz/+qNtvv73Utps3b1aXLl0UGRnp39erV69S23bp0sW/3bJlS0nSvn371KZNGxurB1BVLpfLP22Qy+VyuBoAqFkMedssKipKp556qrp06aInn3xSubm5mjx5cqltjTEl/uEpa7qR44fNi+9TVFRkU9UArPJ6vfr+++/1/fffMwclgKBDoKxmEydO1PTp07Vr164St5155pnasGGDcnNz/fu++uqrSh8jPDxchYWFluoEAACoqjoXKH35Ph3JPVLtP3atyJOUlKSOHTtq6tSpJW4bPny4ioqKdPPNN2vTpk1asWKFpk+fLqlyQ2YJCQnaunWr1q1bp4yMjICACgAAUN3qzDmUXrdXcd44ZfgyqjQ/ZFXEeeNsmUT97rvv1siRI0tcwd2gQQO9/fbb+stf/qKzzjpLnTt31oMPPqjhw4cHnFd5Itdcc43efPNNJScn69ChQ5ozZ45SU1Mt1w2g4nw+n3r27ClJSk9PZ9gbQFBxGYfWCDt8+LBiY2OVmZmpBg0aBNyWk5OjrVu3qm3btgHBKhjW8p4/f75GjhypzMxMeTweWx+7rNcVgHVZWVmKjo6WJB09elRRUVEOVwQA1pWX145XZ3ooJSk2MrbGA151e+mll9SuXTuddNJJWr9+ve69914NHTrU9jAJAABQXepUoKyP9uzZowcffFB79uxRy5YtNWTIEE2ZMsXpsgAAACqMQOmwe+65R/fcc4/TZQAAAFRZnbvKGwAAALVLrQ6UDl0vVG8xEToAAKgOtXLI2+12y+Vyaf/+/WratCnLmFlkjFFeXp7279+vkJAQhYeHO10SUO+4XC7Fx8f7twEgmNTKQBkaGqrWrVtrx44d2rZtm9Pl1Bter1dt2rRRSEit7pgG6iSv18v3FYCgVSsDpSRFR0frtNNOU35+vtOl1AuhoaEKCwuj5wQAANiu1gZK6VgICg0NdboMAAAAlIOxTwCwQXZ2tnr27KmePXsqO7tmlocFgNqiVvdQAkBdUVRUpK+++sq/DQDBhB5KAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwlXeAGCTuLg4p0sAAEcQKAHABlFRUdq/f7/TZQCAIxjyBgAAgCUESgAAAFhCoAQAG2RnZyspKUlJSUksvQgg6HAOJQDYoKioSKtWrfJvA0AwoYcSAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWcJU3ANjE6/U6XQIAOIJACQA2iIqKUlZWltNlAIAjCJQAAGXmZMqX73O6DKBaed1exUbGOl1GvUSgBIAgl5mTqYdWP6QMX4bTpQDVKs4bpwf6P0CorAYESgCwQU5Ojq655hpJ0uLFixUZGelwRRXny/cpw5chT5hHXjfngaJ+Kn6f+/J9BMpqQKAEABsUFhbq3Xff9W/XRV63VzERMU6XAVSb7IJsp0uot5g2CAAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAnTBgGADaKiomSMcboMAHAEPZQAAACwhEAJAAAASwiUAGCDnJwcDRkyREOGDFFOTo7T5QBAjSJQAoANCgsL9cYbb+iNN96os0svAkBVESgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWsPQiANjA6/Xq6NGj/m0ACCYESgCwgcvlUlRUlNNlAIAjGPIGAACAJQRKALBBbm6uUlNTlZqaqtzcXKfLAYAaRaAEABsUFBRo3rx5mjdvngoKCpwuBwBqFIESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCSvlAIANvF6v9u3b598GgGBCoAQAG7hcLjVt2tTpMgDAEQx5AwAAwBICJQDYIDc3V2PHjtXYsWNZehFA0CFQAoANCgoKNGvWLM2aNYulFwEEHQIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAElbKAQAbeDwebd261b8NAMGEQAkANggJCVFCQoLTZQCAIxjyBgAAgCUESgCwQV5eniZMmKAJEyYoLy/P6XIAoEYRKAHABvn5+Zo+fbqmT5+u/Px8p8sBgBpFoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCSjkAYAOPx6PvvvvOvw0AwYRACQA2CAkJUceOHZ0uAwAcwZA3AAAALKGHEgBskJeXp6lTp0qS/v73vys8PNzhigCg5hAoAcAG+fn5mjx5siRpwoQJBEoAQYUhbwAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCVMGwQANoiMjNSXX37p3waAYEKgBAAbhIaGqmfPnk6XAQCOYMgbAAAAltBDCQA2yMvL08yZMyVJd9xxByvlAAgqBEoAsEF+fr7uueceSdKYMWMIlACCCkPeAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAAS5g2CABsEBkZqbS0NP82AAQTAiUA2CA0NFRJSUlOlwEAjmDIGwAAAJbQQwkANsjPz9d//vMfSdLNN98st9vtcEUAUHMIlABgg7y8PN12222SpNTUVAIlgKDCkDcAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASpg0CABtERERo+fLl/m0ACCYESgCwQVhYmAYOHOh0GQDgCIa8AQAAYAk9lABgg/z8fM2fP1+SdP3117NSDoCgQqAEABvk5eVp5MiRkqQhQ4YQKAEEFYa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljBtEADYICIiQgsXLvRvA0AwIVACgA3CwsI0ZMgQp8sAAEcw5A0AAABL6KEEABsUFBRoyZIlkqSrrrpKYWF8vQIIHnzjAYANcnNzNXToUEnS0aNHCZQAggpD3gAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEuY1wIAbBAeHq45c+b4twEgmBAoAcAGbrdbqampTpcBAI5gyBsAAACW0EMJADYoKCjQihUrJEmXXHIJK+UACCp84wGADXJzc3XZZZdJYulFAMGHIW8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlzGsBADYIDw/X008/7d8GgGBCoAQAG7jdbo0dO9bpMgDAEQx5AwAAwBJ6KAHABoWFhfr4448lSeedd55CQ0MdrggAag6BEgBskJOTo+TkZEnHll6MiopyuCIAqDkMeQMAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh2iAAsIHb7da0adP82wAQTAiUAGCD8PBwTZgwwekyAMARDHkDAADAEnooAcAGhYWF+uabbyRJ3bt3Z+lFAEGFQAkANsjJyVGvXr0ksfQigODDkDcAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASpg0CABu43W5NnDjRvw0AwYRACQA2CA8P16RJk5wuAwAcwZA3AAAALKGHEgBsUFRUpE2bNkmS2rdvr5AQ/l4HEDwIlABgg+zsbHXq1EkSSy8CCD78CQ0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEaYMAwAZut1vjx4/3bwNAMCFQAoANwsPD9a9//cvpMgDAEQx5AwAAwBJ6KAHABkVFRdq+fbskqU2bNiy9CCCoECgBwAbZ2dlq27atJJZeBBB8+BMaAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCdMGAYANwsLCNGbMGP82AAQTvvUAwAYRERF65plnnC4DABzBkDcAAAAsoYcSAGxgjFFGRoYkKS4uTi6Xy+GKAKDmECgBwAY+n0/NmjWTxNKLAIIPQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmDYIAGwQFhamESNG+LcBIJjwrQcANoiIiNDcuXOdLgMAHMGQNwAAACyhhxIAbGCMkc/nkyR5vV6WXgQQVOihBAAb+Hw+RUdHKzo62h8sASBYECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJ0wYBACRJvnyuTkf9xfu7ehEoAcAGoaGhGjx4sH+7LvG6vYrzxinDl6HsgmynywGqTZw3Tl631+ky6iWXMcZU5g5FRUX65ZdfdODAAblcLjVu3Fjt2rVTSEjlRs8PHz6s2NhYZWZmqkGDBpW6LwDAXpk5mfTgoN7zur2KjYx1uow6paJ5rcI9lD/99JMefPBBvf3228rODvwL1uPxaNCgQZo4caJOP/30qlcNAHBEbGQs/9ACqLIKBcq1a9cqKSlJERERuuGGG9SlSxc1btxYkvT7779rw4YNWrJkid555x2tWrVKXbt2rdaiAQAAUHtUaMj74osvVk5Ojt555x3FxMSU2ubIkSO67LLLFBkZqRUrVpzwwAx5A6hPsrKyFB0dLUk6evSooqKiHK4IAKyzdch7zZo1WrRoUZlhUpJiYmJ03333aejQoZWvFgAAAHVWha6kCQsLU25u7gnb5eXlKSyMC8cBAACCSYUCZXJysh544AHt2LGjzDY7d+7UxIkTdf7559tWHAAAAGq/CnUnzpgxQ/369dOpp56q888/339Rjsvl0oEDB/Ttt9/qo48+UpMmTbRkyZLqrhkAAAC1SIUCZdu2bbV+/XpNmzZNS5cu1YoVK1R8LY/L5dKpp56qO+64Q+PHj1dcXFy1FgwAAIDapdITm0tSTk6ODh48KElq1KiRIiMjK31grvIGUJ9wlTeA+sj2ic2PFxkZqZYtW1a5OACob0JDQ5WSkuLfBoBgwiXZAGCDyMhIvfPOO06XAQCOqNwC3AAAAMAfECgBAABgCYESAGyQlZWlqKgoRUVFKSsry+lyAKBGcQ4lANjE5/M5XQIAOIIeSgAAAFhiKVBOmDBBDz30kF21AAAAoA6q0sTmkrRr1y61adNGERER2rt3r39C34piYnMA9QkTmwOojyqa16rcQ/n6668rLi5ObrdbixcvrurDAAAAoI6rcqB89dVXNWTIEF1++eVasGCBnTUBAACgDqnSVd4///yzvvnmGz3xxBM6ePCgrr76au3fv19Nmza1uz4AqBNCQkKUmJjo3waAYFKlQLlgwQK1bt1a5557rvLz8xUdHa2FCxdq7NixdtcHAHWCx+PRypUrnS4DABxRpT+jFyxYoKFDh0qS3G63rrrqKr366qu2FgYAAIC6odKBct26ddq8ebOuvfZa/76hQ4fq888/16+//mprcQAAAKj9Kh0oFyxYoHbt2unss8/277vwwgvVpEkTLs4BELSysrLUtGlTNW3alKUXAQSdSgfK1157TcOGDQvYFxoaqquvvpphbwBBLSMjQxkZGU6XAQA1rlKB8ueff1a7du10ww03lLgtNTVVTZo00d69e20rDgAAALVflVfKsYqVcgDUJ6yUA6A+qvaVcgAAAACJQAkAAACLCJQAAACwpEor5QAAAoWEhKhHjx7+bQAIJgRKALCBx+NRenq602UAgCMq9Gf06tWrdfTo0equBQAAAHVQhQJlcnKyNm7cWN21AAAAoA6qUKB0aKpKAKgzfD6fEhISlJCQIJ/P53Q5AFCjOIcSAGxgjNGvv/7q3waAYFLhSxFdLld11gEAAIA6qsI9lMnJyRWaCsPlcikzM9NSUQAAAKg7Khwok5KS1LRp0+qsBQAAAHVQhQPlgw8+qF69elVnLQAAAKiDWM4BAAAAljh+lXdWVpZCQ0NL7A8NDVVkZGRAu7KEhITI4/FUqa3P5yvzikyXyyWv11ulttnZ2SoqKiqzjqioqCq1zcnJUWFhoS1tvV6v/2Kr3NxcFRQU2NLW4/H4z7fNy8tTfn6+LW0jIyP975XKtM3Pz1deXl6ZbSMiIhQWFlbptgUFBcrNzS2zbXh4uNxud6XbFhYWKicnp8y2brdb4eHhlW5bVFSk7OxsW9qGhYUpIiJC0rErmsubJqcybSvzua9t3xEul0vt27cv8znyHfF/+I44hu+Iyrety98RlW1bW74jynstApgKcLlc5osvvqhI0wrLzMw0ksr8SUlJCWjv9XrLbJuYmBjQNi4ursy2PXr0CGgbHx9fZtsOHToEtO3QoUOZbePj4wPa9ujRo8y2cXFxAW0TExPLbOv1egPapqSklPu6HW/w4MHltj169Ki/7YgRI8ptu2/fPn/bMWPGlNt269at/rbjx48vt+13333nbztx4sRy23755Zf+ttOmTSu3bVpamr/t008/XW7b5cuX+9vOmTOn3LYLFy70t124cGG5befMmeNvu3z58nLbPv300/62aWlp5badNm2av+2XX35ZbtuJEyf623733Xflth0/fry/7datW8ttO2bMGH/bffv2ldt2xIgR/rZHjx4tt+3gwYMD3sPlteU74tgP3xH/98N3xLEfviOO/fAdcezHru+IzMxMU54K9VCWl3oBAAAQ3Fz/P+HXuMOHDys2Nla7du1SgwYNStxOV3XpbRnOYjiL4azKt+U7ompt+Y44hu+IyrflO+KY+vAdcfDgQbVq1UqZmZml5jV//U4HyhMVCAB1gc/nU8+ePSVJ6enpAf8wAEBdVdG85vhFOQBQHxhjtHHjRv82AAQTpg0CAACAJQRKAAAAWFLlIe/MzEz9+OOPpZ6U279/f0tFAQAAoO6odKAsKCjQrbfeqpdeeqnMq4TKu3oIAAAA9Uulh7wff/xxvf3223rxxRdljNHTTz+t5557Tj169NBpp52m9957rzrqBAAAQC1V6UD58ssv6/7779d1110nSerdu7duuukmffHFF4qPj1daWprtRQJAbedyuRQfH6/4+Hj/fIwAECwqHSh/+eUXde3a1T/R7PETpt56662aP3++fdUBQB3h9Xq1bds2bdu2jTkoAQSdSgfKqKgo5eXlyeVyqXHjxvr111/9t3k8Hh04cMDWAgEAAFC7VTpQnnnmmdq6daskqW/fvnrssce0Y8cO7du3T9OmTdMZZ5xhe5EAAACovSp9lfewYcP0448/SpImT56s/v37Kz4+XtKxdT7ffPNNeysEgDogOzvbP2Xa6tWrA9b6BYD6zvJa3r/99puWLl0ql8uliy66qMI9lKzlDaA+ycrKUnR0tCTp6NGjioqKcrgiALCu2tby3r59u1q2bCm32y1JOvnkk3X77bdLOjZH5fbt29WmTZsqlg0AAIC6ptLnULZt21Zr164t9bb169erbdu2losCAABA3VHpQFneCHlhYSHzrwEAAASZSgdKSaWGxtzcXL333nuKi4uzXBQAAADqjgqdQzl58mT94x//kHQsTPbp06fMtjfddJM9lQEAAKBOqFCg7NWrl8aMGSNjjGbNmqXBgwerefPmAW0iIiLUuXNnDR8+vFoKBYDajhEaAMGqQoHy0ksv1aWXXirp2NQYDz74IBffAMBxoqKitH//fqfLAABHVHraoDlz5lRHHQAAAKijKhQoV69eXakHLV4tAgAAAPVfhQJlUlKS/8puY0yZUwMV31ZYWGhfhQBQB2RnZ/tPDXrvvfdYehFAUKlQoExLS6vuOgCgTisqKtKqVav82wAQTCoUKBMTE6u7DgAAANRRVZrYvNjmzZv16aefKisry656AAAAUMdUKVC+9NJLat26tTp06KD+/ftr8+bNkqShQ4dq9uzZthYIAACA2q3SgXLRokVKTU1V9+7d9fTTTwes7d29e3ctXLjQ1gIBAABQu1U6UD788MMaOXKk3nrrLd18880Bt7Vv314bN260rTgAAADUfpUOlJs2bdK1115b6m2NGzfWgQMHLBcFAHWR1+uV1+t1ugwAqHGVXinH6/UqMzOz1Nt27typRo0aWS4KAOqaqKgoLlAEELQq3UN57rnnljh3stjcuXOVlJRkR10AAACoIyrdQ/nggw+qX79+6tWrl4YPHy6Xy6U333xTEydO1OrVq/Xll19WR50AAACopSrdQ9mjRw+99957Onr0qMaNGydjjKZOnaoff/xR7777rjp16lQddQJArZaTk6OBAwdq4MCBysnJcbocAKhRLlPa2HUFbdmyRXv37lVcXJxOP/30St338OHDio2NVWZmpho0aFDVEgCgVsjKylJ0dLQk6ejRo4qKinK4IgCwrqJ5rdJD3sc75ZRTdMopp1h5CAAAANRxlQqU+/fv13PPPafVq1dr165dkqRWrVopOTlZN998s5o0aVItRQIAAKD2qvCQ94cffqhrrrlGhw8fVmhoqOLi4mSM0YEDB1RYWKhGjRppyZIl6t+/f4UOzJA3gPqEIW8A9VFF81qFLsrZv3+/hg0bptjYWC1cuFCZmZnavXu39uzZo8zMTL322muKiorS4MGDmdgcAAAgyFQoUL7wwgsqLCzUp59+qsGDBwesBOH1ejV06FB98sknys/P1wsvvFBtxQIAAKD2qVCg/OCDDzRq1Ci1bt26zDZt2rTRyJEj9f7779tWHAAAAGq/CgXKTZs2qV+/fidsd95552nTpk2WiwKAuiYqKkrGGBljOH8SQNCpUKA8dOiQmjVrdsJ2zZo106FDh6zWBAAAgDqkQoEyNzdXbrf7hO3CwsKUl5dnuSgAAADUHRWeh3Lz5s0KCyu/+Q8//GC5IACoi3JycnTjjTdKkl5++WVFRkY6XBEA1JwKzUMZEhIil8t1wgczxsjlcqmwsPCEbZmHEkB9wjyUAOojW5denDNnjm2FAQAAoH6pUKAcMWJEddcBAACAOqpCF+UAAAAAZSFQAgAAwBICJQAAACwhUAIAAMCSCs9DCQAom9fr1dGjR/3bABBMCJQAYAOXy8XckwCCFkPeAAAAsIRACQA2yM3NVWpqqlJTU5Wbm+t0OQBQoyq09GJ1YOlFAPUJSy8CqI8qmtfooQQAAIAlBEoAAABYwlXeDsjMlHw+p6sAqpfXK8XGOl0FAKAmEChrWGam9NBDUkaG05UA1SsuTnrgAUIlAAQDAmUN8/mOhUmP51gPDlAfFb/PfT4CJQAEAwKlQ7xeKSbG6SqA6pOd7XQFAICaQqAEABt4vV7t27fPvw0AwYRACQA2cLlcatq0qdNlAIAjmDYIAAAAlhAoAcAGubm5Gjt2rMaOHcvSiwCCDoESAGxQUFCgWbNmadasWSooKHC6HACoUQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJayUAwA28Hg82rp1q38bAIIJgRIAbBASEqKEhASnywAARzDkDQAAAEsIlABgg7y8PE2YMEETJkxQXl6e0+UAQI0iUAKADfLz8zV9+nRNnz5d+fn5TpcDADWKQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCElXIAwAYej0ffffedfxsAggmBEgBsEBISoo4dOzpdBgA4giFvAAAAWEIPJQDYIC8vT1OnTpUk/f3vf1d4eLjDFQFAzSFQAoAN8vPzNXnyZEnShAkTCJQAggpD3gAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEuYNggAbBAZGakvv/zSvw0AwYRACQA2CA0NVc+ePZ0uAwAcwZA3AAAALKGHEgBskJeXp5kzZ0qS7rjjDlbKARBUCJQAYIP8/Hzdc889kqQxY8YQKAEEFYa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAljBtEADYIDIyUmlpaf5tAAgmBEoAsEFoaKiSkpKcLgMAHMGQNwAAACyhhxIAbJCfn6///Oc/kqSbb75Zbrfb4YoAoOYQKAHABnl5ebrtttskSampqQRKAEGFIW8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlTBsEADaIiIjQ8uXL/dsAEEwIlABgg7CwMA0cONDpMgDAEQx5AwAAwBJ6KAHABvn5+Zo/f74k6frrr2elHABBhUAJADbIy8vTyJEjJUlDhgwhUAIIKgx5AwAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALGHaIACwQUREhBYuXOjfBoBgQqAEABuEhYVpyJAhTpcBAI5gyBsAAACW0EMJADYoKCjQkiVLJElXXXWVwsL4egUQPPjGAwAb5ObmaujQoZKko0ePEigBBBWGvAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYwrwUA2CA8PFxz5szxbwNAMCFQAoAN3G63UlNTnS4DABzBkDcAAAAsoYcSAGxQUFCgFStWSJIuueQSVsoBEFT4xgMAG+Tm5uqyyy6TxNKLAIIPQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmNcCAGwQHh6up59+2r8NAMGEQAkANnC73Ro7dqzTZQCAIxjyBgAAgCX0UAKADQoLC/Xxxx9Lks477zyFhoY6XBEA1BwCJQDYICcnR8nJyZKOLb0YFRXlcEUAUHMY8gYAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCtEEAYAO3261p06b5twEgmBAoAcAG4eHhmjBhgtNlAIAjGPIGAACAJfRQAoANCgsL9c0330iSunfvztKLAIIKgRIAbJCTk6NevXpJYulFAMGHIW8AAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlTBsEADZwu92aOHGifxsAggmBEgBsEB4erkmTJjldBgA4giFvAAAAWEIPJQDYoKioSJs2bZIktW/fXiEh/L0OIHgQKAHABtnZ2erUqZMkll4EEHz4ExoAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJ0wYBgA3cbrfGjx/v3waAYEKgBAAbhIeH61//+pfTZQCAIxjyBgAAgCX0UAKADYqKirR9+3ZJUps2bVh6EUBQIVACgA2ys7PVtm1bSSy9CCD48Cc0AAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEqYNAgAbhIWFacyYMf5tAAgmfOsBgA0iIiL0zDPPOF0GADiCIW8AAABYQg8lANjAGKOMjAxJUlxcnFwul8MVAUDNIVACgA18Pp+aNWsmiaUXAQQfhrwBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWMG0QANggLCxMI0aM8G8DQDDhWw8AbBAREaG5c+c6XQYAOIIhbwAAAFhCDyUA2MAYI5/PJ0nyer0svQggqNBDCQA28Pl8io6OVnR0tD9YAkCwIFACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYR5KALBBaGioBg8e7N8GgGBCoAQAG0RGRmrRokVOlwEAjmDIGwAAAJYQKAEAAGAJgRIAbJCVlSWXyyWXy6WsrCynywGAGkWgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMJKOQBgg9DQUKWkpPi3ASCYECgBwAaRkZF65513nC4DABzBkDcAAAAsIVACAADAEgIlANggKytLUVFRioqKYulFAEGHcygBwCY+n8/pEgDAEfRQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEq7yBgAbhISEKDEx0b8NAMGEQAkANvB4PFq5cqXTZQCAI/gzGgAAAJYQKAEAAGAJgRIAbJCVlaWmTZuqadOmLL0IIOhwDqVDWKEN9Vmwvr8zMjKcLgEAHEGgrGFerxQXJ2VkSNnZTlcDVJ+4uGPvdwBA/UegrGGxsdIDDwRvDw6Ch9d77P0OAKj/CJQOiI3lH1oAAFB/cFEOAAAALCFQAgAAwBKGvAHABiEhIerRo4d/GwCCCYESAGzg8XiUnp7udBkA4Aj+jAYAAIAlBEoAAABYQqAEABv4fD4lJCQoISFBPiaaBRBkOIcSAGxgjNGvv/7q3waAYEIPJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALOEqbwCwgcvlUocOHfzbABBMCJQAYAOv16vvv//e6TIAwBEMeQMAAMASAiUAAAAsIVACgA18Pp86duyojh07svQigKDDOZQAYANjjDZu3OjfBoBgQg8lAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAs4SpvALCBy+VSfHy8fxsAggmBEgBs4PV6tW3bNqfLAABHMOQNAAAASwiUAAAAsIRACQA2yM7OVs+ePdWzZ09lZ2c7XQ4A1CjOoQQAGxQVFemrr77ybwNAMKGHEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlnCVNwDYJC4uzukSAMARBEoAsEFUVJT279/vdBkA4AiGvAEAAGAJgRIAAACWECgBwAbZ2dlKSkpSUlISSy8CCDqcQwkANigqKtKqVav82wAQTOihBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJVzlDQA28Xq9TpcAAI4gUAKADaKiopSVleV0GQDgCIa8AQAAYAmBEgAAAJYQKAHABjk5ORo4cKAGDhyonJwcp8sBgBrFOZQAYIPCwkK9++67/m0ACCb0UAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBLHrvI2xkiSDh8+7FQJAGCb41fJOXz4MFd6A6gXinNacW4ri2OB8siRI5Kkk08+2akSAKBatGrVyukSAMBWR44cUWxsbJm3u8yJImc1KSoq0q5duxQTEyOXy+VECQAAACiHMUZHjhxRq1atFBJS9pmSjgVKAAAA1A9clAMAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACcARX3zxha666iq1adNGERERat68uc455xyNGzcuoN2sWbM0d+7cCj/uypUr5XK5tHLlynLbzZ07Vy6Xy/8TFhamli1b6tprr9VPP/1UhWd0zNSpU7V06dIq1+WU+++/X926dVPjxo0VGRmpdu3a6eabb9avv/7qdGkA6gACJYAa984776hv3746fPiwpk2bpg8++EAzZ87Uueeeq9dffz2gbWUDZWXNmTNHa9as0f/+7//qtttu01tvvaV+/frp4MGDVXq8sgJl9+7dtWbNGnXv3t1ixdXj0KFDuu666zRv3jy9//77Gj9+vJYvX67evXvrwIEDTpcHoJZzbGJzAMFr2rRpatu2rVasWKGwsP/7Grr22ms1bdq0Gq2lU6dO6tGjhyQpKSlJhYWFmjhxopYuXaqRI0fadpwGDRqoT58+tj2eJG3evFlnnHGGLY/1zDPPBPx/UlKS2rZtq5SUFC1btkyjRo2y5TgA6id6KAHUuAMHDiguLi4gTBY7fuLchIQEff/991q1apV/aDohIcF/+w8//KABAwbI6/UqLi5Ot956q38VrqoqDpd79+7178vJydG4ceN01llnKTY2Vo0bN9Y555yjZcuWBdzX5XIpKytL8+bN89eblJQkqewh77feekvnnHOOvF6vYmJidNFFF2nNmjUVqvXMM8/U2WefrenTp2vHjh1Vf9JlaNq0qSSV+nsCgOMRKAHUuHPOOUdffPGF/vrXv+qLL75Qfn5+qe2WLFmidu3aqVu3blqzZo3WrFmjJUuWSDoW+BITE/Xdd99p1qxZevnll3X06FHddtttlmrbunWrJOn000/378vNzdXvv/+u8ePHa+nSpVqwYIH69eunq6++Wi+99JK/3Zo1a+TxeJSSkuKvd9asWWUe69VXX9WgQYPUoEEDLViwQC+88IIOHjyopKQkffLJJyes9b///a+6deumhx9+WG3atFFiYqL+/e9/KyMjo8rPv6CgQNnZ2Vq7dq3uvPNOnX766br66qur/HgAgoQBgBqWkZFh+vXrZyQZScbtdpu+ffuahx9+2Bw5ciSgbceOHU1iYmKJx7j33nuNy+Uy69atC9h/0UUXGUkmLS2t3BrmzJljJJnPP//c5OfnmyNHjpj333/ftGjRwvTv39/k5+eXed+CggKTn59vRo8ebbp16xZwW1RUlBkxYkSJ+6SlpQXUVVhYaFq1amU6d+5sCgsL/e2OHDlimjVrZvr27Vtu/cfLy8szy5cvNzfccIOJiYkxYWFhJiUlxbz88sslXs/y7N692/87kWR69+5tdu7cWeH7Awhe9FACqHFNmjTRxx9/rPT0dD3yyCMaNGiQfvzxR/3tb39T586dK9TDlpaWpo4dO6pr164B+4cPH16pWvr06SO3262YmBgNGDBAjRo10rJly0oM8y5atEjnnnuuoqOjFRYWJrfbrRdeeEGbNm2q1PGKbd68Wbt27dKNN94YMMwfHR2ta665Rp9//rl8Pl+FHsvtdmvgwIF6+eWXtW/fPr322muKiorSzTffrGbNmmnRokUVepy4uDilp6frk08+0ezZs/X7778rOTlZu3fvrtJzBBA8CJQAHNOjRw/de++9WrRokXbt2qW77rpL27Ztq9CFOQcOHFCLFi1K7C9tX3leeuklpaen66OPPtItt9yiTZs26brrrgto8+abb2ro0KE66aST9Morr2jNmjVKT0/XqFGjlJOTU6njHV+/JLVs2bLEba1atVJRUVGVrjTPzs5WZmamMjMzlZ+fr6ioKEVGRlbovmFhYerRo4fOPfdc3XTTTfroo4/0yy+/6JFHHql0HQCCC2daA6gV3G63Jk6cqMcff1zffffdCds3adJEe/bsKbG/tH3lad++vf9CnOTkZBUWFur555/XG2+8ocGDB0uSXnnlFbVt21avv/66XC6X/765ubmVOtYf65dUau/frl27FBISokaNGlXosY4cOaJly5bptdde0wcffKCIiAgNGjRIy5Yt08UXX1zli2pat26tVq1a6ccff6zS/QEED3ooAdS4soZQi4ePW7Vq5d8XERGh7OzsEm2Tk5P1/fffa/369QH7X331VUu1TZs2TY0aNdKDDz6ooqIiSceu3g4PDw8Ik3v27ClxlXd59f7RGWecoZNOOkmvvvqqjDH+/VlZWVq8eLH/yu/yvP7667r66qvVrFkzjR49WqGhof5h71deeUUpKSmWrtD++eeftWPHDp166qlVfgwAwYFACaDGXXLJJUpJSdGzzz6rtLQ0ffjhh5oxY4auvvpqRUdH64477vC37dy5s9avX6/XX39d6enp+vbbbyVJd955p+Li4jRw4EDNnTtX7733nm644Qb98MMPlmpr1KiR/va3v2nTpk3+cHrZZZdp8+bNGjNmjD766CPNmzdP/fr1K3W4unPnzlq5cqXefvttffXVV9q8eXOpxwkJCdG0adO0bt06XXbZZXrrrbe0aNEiJScn69ChQxUaZh4+fLgOHTqkp556Snv37tWyZcs0bNgweTyeSj3nDRs26IILLtCzzz6rFStW6L///a8ee+wxJScnq0mTJho/fnylHg9AEHL6qiAAwef11183w4cPN6eddpqJjo42brfbtGnTxtx4441m48aNAW23bdtmLr74YhMTE2Mkmfj4eP9tGzduNBdddJGJjIw0jRs3NqNHjzbLli2r1FXe6enpJW7Lzs42bdq0MaeddpopKCgwxhjzyCOPmISEBBMREWHat29vZs+ebSZOnGj++DW6bt06c+655xqv12sk+a9Q/+NV3sWWLl1qevfubSIjI01UVJS54IILzKefflqh13HXrl0Vancie/bsMTfccIM55ZRTjNfrNeHh4aZdu3bm1ltvNdu3b7flGADqN5cxx421AAAAAJXEkDcAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACz5fwgNL++bPSXLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Event 6: Cough\n", "Start time: 92.258 sec, End time: 93.715 sec\n", "left std ratio: 1.773, right std ratio: 4.874\n", "LM_max_index: 93.262, LL_max_index: 93.605, left delta t: -0.342\n", "RM_max_index: 93.386, RL_max_index: 92.814, right delta t: 0.571\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAKnCAYAAAA4Id0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ50lEQVR4nO3deXgUVb7/8U8n3UmnOyEsYQkCARGUTSWyqCBJXACDiiKLogxBFL2uo4DrVWC8osOI4zbMeFUWERFQQUQFHSWiDEpQQAXEDUQWgSAEyL6c3x/80peYhSRVSZH0+/U8eSiqT3d9u9PpfHJO1TkuY4wRAAAAUE0hThcAAACAuo1ACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAmUIzU1VS6XS5MnT3a6lDqhvNerbdu2atu2rSM1lSclJUUul0vbt293upST1uzZs+VyuTR79uwaPxY/ayc3vj+oDAIlbLd9+3a5XC65XC6dcsopKiwsLLPdN998E2h3xhln1HKVJ4+srCw988wzSkpKUtOmTeXxeNS4cWP17dtXTzzxhPbv3+90iXVObYYhu3388ceBn4tly5Y5XU7QKioq0syZM9W3b181bNhQPp9PHTt21JgxY3TkyJEqPZYxRm+99ZaGDBmiVq1aKTw8XFFRUTrrrLN09913a/PmzTX0LIDa43a6ANRfbrdbu3fv1ooVK5ScnFzq9pdffllut1sFBQUOVHdy2LhxowYPHqxffvlFcXFxuuKKK9S8eXMdPnxYn3/+uR544AE9/vjj2r17t/x+v9PlVstHH33kdAmlPP7447r//vt1yimnOF1KKTNnzpQkuVwuvfzyy7rsssscrqjm9erVS1u2bFFMTIzTpUiScnNzNXToUC1btkxnnnmmUlJSFB4erh07dui9997To48+qqioqEo91u+//65hw4bp448/VsOGDXXJJZfo1FNPVV5enjZt2qQZM2bo2Wef1UcffaTExMSafWJADSJQosacf/752rhxo2bOnFkqUObl5WnevHlKTk7W0qVLHarQWTt37lT//v2Vnp6u6dOn66677lJoaGiJNuvXr9ftt9+u/Px8h6q0rn379k6XUEpsbKxiY2OdLqOUQ4cO6a233lKvXr3k9Xq1bNky7d27V82bN3e6tBrl8/lOqlGKBx54QMuWLdMTTzyh++67r8RtRUVFlX6cgoICXXXVVVq1apWuv/56/eMf/1CDBg1KtNmzZ48eeughZWRk2FI74BSGvFFjIiIiNGLECL3zzjtKT08vcdvSpUuVnp6uMWPGlHnfis5xmzx5slwul1JTU0vsf/PNN5WQkKBmzZrJ6/WqdevWGjhwoJYsWVLqMb7++mtdf/31geGn2NhYDRw4UO+8806lntu+fft0991367TTTlN4eLhiYmJ09dVX69tvv63U/SXpoYce0r59+/Tggw/qnnvuKRUmJal79+765JNPSv0SWrZsmZKSkhQdHa2IiAidffbZevrpp8s9vaCy7YtPV0hJSdF3332nIUOGKCYmpsT3Ijs7W/fff79at24tr9errl276sUXXyz3eZZ1DuXx38OFCxcqPj5eERERio2N1Z133qns7OwS7fPy8vTcc89pwIABat26tcLDw9WsWTMNGTJE69evL9E2JSUl8L4aM2ZMYPjY5XKVaFPe+2vOnDk699xzFRkZqcjISJ177rmaM2dOqXbHn1f21VdfacCAAYqKilJ0dLSuuuqqap2f+dprryk7O1ujRo3Sn/70JxUUFOiVV14ps+3xz2HGjBnq1KmTvF6v4uLiNGXKlFLBJyMjQ3/961+VkJCgli1bKiwsTC1bttSf/vQn/fTTTyes7ciRI4qKilKXLl3KvL2wsFAtW7ZU06ZNlZeXJ0nKycnR9OnTddZZZyk6OlqRkZFq3769rr32Wn3zzTeB+5Z3jt4PP/ygMWPGqF27dvJ6vYqJiVF8fLzGjx9/wnqra9euXXruued0wQUXlAqTkhQSEqKQkMr96pw7d65WrVqlfv36ac6cOaV+jqVjf9zMnDlTAwcOLLF/06ZNGjFihJo1a6bw8HC1a9dOd999t37//fdSj+Fyucrt3SzvHObt27drxIgRaty4sSIjI5WQkKBVq1aV+/lazK73OuohA9hs27ZtRpIZMGCA+fzzz40k8/TTT5doc+mll5pmzZqZ/Px8I8mcfvrpJW4fPXq0kWS2bdtW6vEnTZpkJJmVK1cG9s2YMcNIMrGxsWbcuHHmgQceMCkpKaZz585m9OjRJe7/1ltvmfDwcOPxeMyQIUPMAw88YMaOHWu6du1qBg8eHGi3cuVKI8lMmjSpxP1//PFH06pVK+NyucyAAQPM+PHjzahRo4zP5zN+v998/vnnJ3yNMjMzTVhYmImIiDCHDh06YfvjPf3000aSady4sbnlllvM+PHjTceOHY0kM2TIEFNUVFTt9sXfuz59+pjo6Ghz/vnnm3vuucekpKSYXbt2mcLCQnPxxRcbSaZbt27m3nvvNWPHjjV+v99cdtllZb5ecXFxJi4ursS+4u/h0KFDjd/vNyNHjjR333236dSpk5FkRo4cWaL9nj17TEhIiElISDDjxo0z9913nxk2bJgJDw83Xq/XrF27NtB28eLFZvDgwUaSGTx4sJk0aVLgq1h5768///nPRpI55ZRTzJ133mnuuusu06pVKyPJ3H333SXaFr8/Bg0aZHw+n0lOTjbjx483F154oZFk2rdvb7Kzsyv5XT0mPj7eeDwes3//fpORkWEiIiJK/Wz88TkMHTrUxMTEmJSUFHPnnXeaNm3aGEnmwQcfLNF+zZo1JiwszAwYMMDceuutZuLEiebyyy83oaGhpnHjxmb79u0l2s+aNctIMrNmzQrsu+mmm4wks3r16lL1vP3220aSGT9+fGDf8OHDjSRz5plnmrvuusvce++95pprrjHNmzcv8bhl/azt2rXLNGzY0Hg8HnPllVea++67z9x2222mf//+xuPxVOFVrZpnnnnGSDLPPvusOXz4sHn11VfN1KlTzcsvv2x27txZ5n2K389/fO/36dPHSDIffPBBlWpYvXq18fv9xu12m2uuucbcf//9JjEx0UgyHTp0MOnp6SXaSzIJCQllPlZZP387d+40sbGxRpJJTk42DzzwgBkyZIgJDw83AwcOLPX5WhPvddQ/BErY7vhAaYwxXbp0MWeeeWbg9p07d5rQ0NDALx47AmV8fLwJCwsz+/btK9X++A/fvXv3msjISOP3+81XX31Vqu2vv/4a2C4vUJ5//vnG7XaX+iWxdetWExUVZbp161bqcf8oNTXVSDJ9+/Y9Ydvj/fTTT8btdptmzZqZHTt2BPbn5uaahIQEI8nMnTu32u2Lv3eSzMMPP1zq+MUhY+DAgaagoCCw/+uvvzZhYWFVDpTR0dHmu+++C+zPysoyHTt2NC6Xy+zatSuwPycnp8xf5t9++62JjIw0F198cZl1Hh9ajlfW+2vVqlVGkunUqVOJkH/o0CFzxhlnGEnm008/Dewvfn9IMq+//nqJxx81apSRZObPn1/m8cuyfv16I8lcccUVgX3XXnutkWQ+++yzcp9Du3btzO7duwP79+/fbxo2bGiioqJMbm5uiedx4MCBUo/z8ccfm5CQEHPjjTeW2F/Wa5iWlmYkmTFjxpR6nCuuuMJIMlu2bAkcz+VymR49epR4rxhjTEFBgTl48GDg/2X9rD377LNGknnmmWdKHWv//v2l9tml+Hv36KOPBkJX8VdYWJh56qmnSt2nrECZn59vPB6PcbvdVQpbhYWFpkOHDkaSWb58eYnbHnjgASPJjB07tsT+qgbK66+/3kgyf/vb30rsL/6elxco7Xqvo35iyBs1bsyYMfr666/15ZdfSjp2BW5hYaFuuOEGW4/j8Xjk8XhK7W/SpElge86cOTp69KjGjx+v7t27l2rbqlWrCo+xfv16/ec//9Ho0aN1ySWXlLitY8eOuummm/TNN9+ccOj7t99+q9Tx/mjevHkqKCjQ+PHj1bp168D+sLAwPfHEE5JU4srmqrYv1qJFC/33f/93qf3Fw6+PPfZYiSH6bt26adSoUVV6LpJ011136fTTTw/8PyIiQtdee62MMYH3iySFh4eXeQFNly5dlJSUpFWrVlk+z7T4dZg8ebKio6MD+6OjozVp0qQSbY7Xr18/jRgxosS+4vd2WlpapY//8ssvS1KJ1/FPf/pTidvK8vDDD5c4HzQmJkaDBw/WkSNHtHXr1hLPo3HjxqXun5SUpC5duujf//73CWvs0aOH4uPjtXDhwhJXOv/2229677331Ldv38C5kC6XS8YYhYeHlzqdIzQ0VA0bNjzh8aRj74k/qsmLd/bt2yfp2PvgrLPO0qZNm3T48GEtW7ZMMTExuueee/Tee++VuM/tt9+uLVu26Pbbbw/sO3DggPLz8xUTEyOv11vp469evVo//PCDLr30Ug0YMKDEbQ899JCaNGmi1157LXBaQVXl5uZq0aJFat68ue68884St40ePbrCc1nteq+jfiJQosaNGjVKHo8ncPXq7Nmz1bt3b3Xu3Nm2YwwfPlyZmZnq2rWrJkyYoGXLlunQoUOl2q1du1aS1L9//2od5/PPP5d07Bfo5MmTS3199913khT4127F5wuWdb7Uueeeq4iICG3YsKHa7YudddZZCgsLK7V/48aN8vl8io+PL3XbBRdcULkncZyyHqc4ZP/x+7dhwwaNHDlSbdq0UVhYWOC8yHfeeUd5eXmlztOtqopeq+J9Zb1WVXkO5cnNzdW8efPUsGFDXX755YH9l1xyiWJjY7Vw4UIdPXq0zPtW5fipqam68sorFRsbK4/HE3gNv/nmG+3evbtStd58883KzMzU/PnzA/tmz56tgoIC3XjjjYF9DRo00MCBA7V69WrFx8dr6tSp+vTTTysdhC677DL5fD7ddtttGj58uGbOnKnvv/++UveVjn2v/vjzWZlppIrPPW3WrJnefPNNde7cWVFRURo0aFAg2D/11FMl7hMTE6MzzjjDlqBb0fvQ7/erR48eys7OrtJrcbytW7cqNzdXPXr0KPUz7nK5dN5555V7Xzve66i/uMobNa5Zs2ZKTk7W/PnzdcUVV+jHH3/UhAkTbD3GvffeqyZNmuhf//qXnnrqKU2fPl1ut1vJycl6+umn1a5dO0n/96FX3eliik+If/fdd/Xuu++W2y4zM7PCx2nRooWkYxcAVMXhw4clqdyrfps1a1biMavavlh57TMyMkr0dFbmPhU5viewmNt97GPp+AuG/vOf/+jCCy+UdOyPgQ4dOigyMlIul0tLlizRxo0blZubW+XjH+/w4cMKCQlR06ZNS93WvHlzhYSElHklbmWfQ0UWL16sgwcP6qabblJ4eHhgf2hoqK677jo9+eSTWrBggcaOHVvt4y9atEgjRoxQZGSkBgwYoLZt28rn8wXm6/zll18qVevIkSM1fvx4vfTSSxo3bpykY1MdRUdHa9iwYSXavvHGG5o6darmz5+vhx56SJIUFRWlG264QVOnTpXP5yv3OO3atdOaNWs0ZcoUvf/++1q0aJEk6fTTT9ejjz5a6lh/tGHDBk2ZMqXEvoSEBKWkpFR4v+LX8+KLLy5VX//+/RUeHq5169ZV+BjSsZERj8ejAwcOKDc3t8T3tSIn+pkt/uyo7lXhxY9f1vu8ouNK9rzXUX/RQ4laccMNN+jgwYMaO3ZsYFizIsVXUZY1R2VZH6Qul0s33nij1q1bp/3792vx4sUaMmSIli5dqkGDBgU+7IqH2aoa5IoVX6X53HPPyRw7B7nMr9GjR1f4OD179lRYWJjWrVsX+ICvyvH37t1b5u379u0rcSVpVdsXO/6K6ONFR0cHhgT/qLxj2OGxxx5Tbm6uPvroIy1dulTTp0/XlClTNHny5MAvWKsaNGigoqKiMieS37dvn4qKisp8rexQ3PP14osvlrgq3eVy6cknnyzRpromT54sr9erL7/8UosWLdLf/va3wGtYlSHZyMhIjRw5Umlpafr666+VmpqqH374Qdddd12pAOb3+/XYY4/p559/1s8//6yXX35ZZ5xxhp555hndfffdJzzWmWeeqTfffFO///671qxZo0ceeUR79+7ViBEjtHr16grvm5KSUurnsrwrl49XfApGWUPyISEhioqKKjULQVncbrd69eql/Px8rVq16oTti53oZ7Z4//HvRZfLVe58vn/8vCy+X3kLJtTkzzHqNwIlakVycrJatGihXbt26eqrrz7hL+ZGjRpJKjv4/XGamD9q0qSJrrzySi1YsEAXXnihtmzZoh9//FHSsQmUJemDDz6oztNQ7969JUlr1qyp1v2L+Xw+XXPNNcrOztb06dMrbFtQUBAYhis+77OsX4xr165Vdna2zj777MC+qrY/kbPOOktZWVn66quvSt326aefVvpxquqnn35S48aN1adPnxL7y6ul+Jy9qvSaVPRaffLJJ5JUpdeqsrZv366PPvpIzZs319ixY8v8atOmjdasWaMtW7ZU+zg//fSTOnXqpA4dOpTYv3v37kpNG3S8m2++WZL00ksvBYLu8cPdZWnXrp1uuOEGffLJJ4qMjKzS/LMej0fnnnuupkyZomeffVbGmBpbRai4J7ys1Wv279+v9PT0Si8lWtyjPHXqVBljKmxb3MNe0fswKytL69atU0RERIlzjxs1alTmZ+X27dtLDUWffvrpCg8P15dfflnq9ANjTOC0HqCqCJSoFW63W0uXLtXixYv12GOPnbB9jx49JJW+COKNN94I/HI/3ooVK0r9hZ6fnx8Yoi4+sX/06NGKjIzU9OnTyzwf7kQ9l7169VLv3r01f/58LViwoNTtRUVFZdZXlscee0xNmzbVY489pmeffbbMCZO//vprJSYmBnoxR44cKbfbraeeeqrEOW/5+fm6//77JanEkF5V259I8QUjDz30UImw9s0332ju3LmVfpyqiouL08GDB7Vp06bAvsLCQk2YMKHMnpbii0927txZ6WMU9ypPmTKlRK/x4cOHA0OnJ+p5ro5Zs2bJGKNbbrlFL730UplfxfMuWumljIuL048//liiByonJ0f/9V//VeXVquLj43XOOefo1Vdf1Ztvvqlzzjmn1EVu+/fvD5yzfLyDBw8qNze3zIttjpeWllZmb3hx/Se6f3UlJCSoU6dO+uijj/Thhx8G9htj9OCDD0o6ds728dLT0/Xdd9+VOo931KhRuuCCC5Samlruko179+7VTTfdpOXLl0uS+vTpo/bt2+v9998vdaHU448/rvT0dF177bUlzn/s0aOHtm/fXiKE5uXl6Z577il1vPDwcA0dOlS//fabnn322RK3vfLKK5b+aEFw4xxK1JqePXuqZ8+elWp75ZVXql27dpo9e7Z+/fVXde/eXVu2bNHHH3+s5OTkUldZjhgxQj6fT3379lVcXJzy8/P14YcfavPmzRoxYoTatGkj6dg5g6+88oquueYa9erVS1dccYVOP/10paen64svvlDbtm3LnAj9ePPnz1dSUpKuueYaPf300zrnnHPk9Xq1Y8cOrVmzRvv371dOTs4Jn2OrVq30wQcf6Morr9Rdd92lv//977rooosCSy+uXbtWaWlpatCgQeDq9fbt2+uvf/2rxo8frzPPPFPDhw+X3+/XsmXL9N1332nw4MG6/vrrA8eoavsTGT16tF577TUtX75c3bt316WXXqrff/9d8+fPV//+/Wus1+iOO+7QBx98oL59+2r48OHyer1KTU3Vrl27lJiYWKo357zzzlNERISefvppHT58OHC+WHGILku/fv10xx136LnnnlPXrl119dVXB9Zg/vXXX3XnnXeqX79+tj6voqKiwLrjFQX76667ThMnTtTcuXP1+OOPlzmbwYnccccduuOOO9S9e3cNHTpUBQUF+vDDD2WM0VlnnaWNGzdW6fFuvvnmwDmUZfVO7tq1S71791aXLl0UHx+vU045RQcOHNDbb7+t/Px83XvvvRU+/rx58zRjxgwlJibqtNNOU4MGDbR582a99957iomJsX2WiGKhoaGaNWuWLrzwQiUnJ+uqq65S69at9dlnn2nt2rWKj48v9T56/vnnNWXKFE2aNKnE5Oxut1tLlizRsGHDNGfOHC1dulT9+/dXu3btlJeXp82bNys1NVX5+fmBn8OQkBDNnj1bAwYMUHJysoYNG6a4uDh98cUX+vjjj9W+ffvADA3F7r77bn3wwQcaNGiQrr32Wvl8Pn344Ydq2LBhmStCPf744/r3v/+tiRMnauXKlTr77LO1detWLVu2TAMHDtTy5csrPXk7EFC7sxQhGPxxHsoTURnzUBpjzM8//2wGDx5soqKijN/vNxdddJFJS0srd2LzK664wsTFxRmv12uaNGlievfubV544QWTn59f6rHXr19vhg8fbpo3b248Ho+JjY01l156qVm2bFmgTXnzUBpjzO+//27++7//23Tt2tVERESYyMhI06FDBzNy5Ejz1ltvVep5F8vMzDRPP/20SUhIMDExMcbtdpuGDRua8847z/zP//xPqUmMjTk2iXRCQoKJiooy4eHhplu3bmb69OllPteqtC/+3v1xMvg/1nvvvfeaU045xYSHh5vOnTubF154odzXq6J5KI//HhYrbw7JN954w8THxxufz2diYmLM8OHDzU8//VTunKXvvvuu6dmzp4mIiAjMoVesonlOZ86caXr27Gl8Pp/x+XymZ8+eZubMmaXaVfT+qMzraIwxy5cvN5LMRRddVGE7Y4y5+uqrjSTz5ptvnvA5lPX6FhUVmX/961+mS5cuxuv1mhYtWpixY8eavXv3BuYkPd6J5vI8cuSI8Xg8xufzmYyMjFK3Hzx40EyePNn069fPxMbGmrCwMNOyZUszcOBAs2LFihJty3otP//8c3PzzTebrl27moYNG5qIiAjToUMHc+edd5aYU7WmfPvtt+bqq682TZo0MR6Px7Rv39488MAD5siRI6XaljexebGioiLzxhtvmCuvvNK0bNnShIWFGZ/PZ7p27WruvPNOs3nz5lL3+frrrwOT1ns8HhMXF2fuvPPOcufgXLBggenWrZsJCwszLVq0MHfccYc5cuRImT9/xhz7fB02bJiJjo42Pp/PXHDBBeaTTz4xt99+u5Fk1q9fH2hrx3sd9Z/LmBOc2AEAwB+sXbtWvXv31pgxYwJTgqHu69u3r9asWaOMjAxFRkY6XQ7qEPq0AQBVVnz1+S233OJwJaiOPXv2lNo3b948rV69WhdffDFhElVGDyUAoFJ27Nih1157TZs2bdKrr76qgQMH6v3333e6LFRDkyZN1L17d3Xu3FmhoaHasGGDUlNTFRUVpdWrV6tbt25Ol4g6hkAJAKiU1NRUJSUlKTIyUhdeeKFeeOEF2+YBRe166KGH9M4772jHjh3KzMxU06ZNlZSUpIcffrjC5ReB8hAoAQAAYAnnUAIAAMASx+ahLCoq0u7duxUVFVXuMm8AAABwjjFGR44cUcuWLSucn9SxQLl79261bt3aqcMDAACgkn799Ve1atWq3NsdC5RRUVGSjhV4onWdAeBkl5mZqZYtW0o69gez3+93uCIAsO7w4cNq3bp1ILeVx7FAWTzM3aBBAwIlgDovNDQ0sN2gQQMCJYB65USnJ3JRDgAAACwhUAIAAMASAiUAAAAscewcysooKipSXl6e02XUCx6Pp8Q5XgAAAHY5aQNlXl6etm3bpqKiIqdLqTcaNmyoFi1aMO8nAACw1UkZKI0x2rNnj0JDQ9W6desKJ9LEiRljlJWVpX379kmSYmNjHa4IqH9CQ0OVnJwc2AaAYHJSBsqCggJlZWWpZcuW8vl8TpdTL0REREiS9u3bp2bNmvELD7CZ1+vVu+++63QZAOCIk7Lrr7CwUJIUFhbmcCX1S3E4z8/Pd7gSAABQn5yUgbIY5/rZi9cTAADUhJM6UAJAXZGZmSm/3y+/36/MzEynywGAWnVSnkNZnowMKSur9o7n80nR0bV3PAB1W1ZtfkABwEmkzgTKjAzp0Uel9PTaO2ZMjPTww7UTKo0xuvnmm/XGG2/o4MGDWr9+vc4+++yaPzAAAIBFdSZQZmUdC5MREcd6DmvreFlZlQ+UKSkpOnTokJYsWVLl4y1fvlyzZ89WamqqTj31VMXExMjlcmnx4sW68sorq/x4AAAAtaXOBMpiPp8UFVU7x8rOrp3jSNJPP/2k2NhYnX/++bV3UAAAABtwUU4t2bx5s5KTkxUZGanmzZtr1KhRSv//4/cpKSm64447tGPHDrlcLrVt21Zt27aVJF111VWBfQAAACcjAmUt2LNnjxISEnT22Wdr3bp1Wr58ufbu3avhw4dLkp555hn95S9/UatWrbRnzx6lpaUpLS1NkjRr1qzAPgAAgJNRnRvyrov++c9/Kj4+XlOnTg3smzlzplq3bq3vv/9eHTt2VFRUlEJDQ9WiRYsS9y1efxvAyS0kJEQJCQmBbQAIJgTKWvDll19q5cqVioyMLHXbTz/9pI4dOzpQFQA7RUREKDU11ekyAMARBMpaUFRUpMsvv1x//etfS90WGxvrQEUAAAD2IVDWgvj4eL355ptq27at3O7Kv+QejyewrjkAAMDJqs4FytpaiKK6x8nIyNCGDRtK7Lv55pv14osv6tprr9XEiRMVExOjH3/8Ua+//rpefPFFhYaGlvlYbdu21UcffaQ+ffooPDxcjRo1ql5RAGpcZmZmYDaG7du3y+/3O1sQANSiOhMofb5jK9ekp9fe/JAxMVWfRD01NVXdu3cvsW/06NFavXq17rvvPg0YMEC5ubmKi4vTwIEDKzx5f/r06brnnnv04osv6pRTTtH27dur8SwA1Jb02lzKCwBOIi5jjHHiwIcPH1Z0dLQyMjLUoEGDErfl5ORo27Ztateunbxeb2A/a3lbU97rCsC6zMzMwIV3R48epYcSQL1QUV47Xp3poZSOhbv6FPAAAADqAyZLAwAAgCUESgAAAFhCoAQAAIAldeocSgA4WYWEhKhHjx6BbQAIJgRKALBBRESE0tLSnC4DABzBn9EAAACwhEAJAAAAS+rUkHdGToay8mtvZnOfx6doLxNfAjixrKwsde7cWZK0efNm+aq6zBYA1GF1JlBm5GTo0VWPKj2r9pY2i/HF6OF+D9saKl0ulxYvXqwrr7yyUu1TU1OVlJSkgwcPqmHDhrbVAcBexhj98ssvgW0ACCZ1JlBm5WcpPStdEe4I+Tw1/5d/8fGy8rMqHShTUlI0Z84cSVJoaKhatmypQYMGaerUqWrUqJEkac+ePYFtu0yePFlLlizRhg0bbH1cAACAyqgzgbKYz+NTVHhUrRwruyC7yvcZOHCgZs2apYKCAm3evFk33HCDDh06pPnz50uSWrRoYXeZAAAAjuKiHJuFh4erRYsWatWqlfr3768RI0bogw8+CNzucrm0ZMmSwP//85//6Oyzz5bX61WPHj20ZMkSuVyuUr2NX375pXr06CGfz6fzzz9fW7dulSTNnj1bU6ZM0caNG+VyueRyuTR79uxaeKYAAADHEChr0M8//6zly5fL4/GUefuRI0d0+eWXq1u3bvrqq6/06KOP6r777iuz7UMPPaTp06dr3bp1crvduuGGGyRJI0aM0Pjx49WlSxft2bNHe/bs0YgRI2rsOQEAAPxRnRvyPtktW7ZMkZGRKiwsVE5OjiTpqaeeKrPtvHnz5HK59OKLL8rr9apz587atWuXbrrpplJtH3vsMSUkJEiS7r//fg0aNEg5OTmKiIhQZGSk3G43w+kAAMARBEqbJSUl6Z///KeysrL00ksv6fvvv9cdd9xRZtutW7fqzDPPlNfrDezr1atXmW3PPPPMwHZsbKwkad++fWrTpo2N1QOoLpfLFZg2yOVyOVwNANQuhrxt5vf7ddppp+nMM8/Us88+q9zcXE2ZMqXMtsaYUr94yptu5Phh8+L7FBUV2VQ1AKt8Pp82bdqkTZs2MQclgKBDoKxhkyZN0pNPPqndu3eXuu2MM87Q119/rdzc3MC+devWVfkYYWFhKiwstFQnAABAddW5QJmVn6UjuUdq/MuuFXkSExPVpUsXTZ06tdRtI0eOVFFRkcaNG6ctW7ZoxYoVevLJJyVVbcisbdu22rZtmzZs2KD09PQSARUAAKCm1ZlzKH0en2J8MUrPSq/W/JDVEeOLsWUS9XvuuUdjxowpdQV3gwYN9M477+i//uu/dPbZZ6tbt2565JFHNHLkyBLnVZ7I1VdfrbfeektJSUk6dOiQZs2apZSUFMt1A6i8rKws9ezZU5KUlpbGsDeAoOIyDq0RdvjwYUVHRysjI0MNGjQocVtOTo62bdumdu3alQhWwbCW97x58zRmzBhlZGQoIiLC1scu73UFYF1mZqYiIyMlSUePHpXf73e4IgCwrqK8drw600MpSdHe6FoPeDXtlVde0amnnqpTTjlFGzdu1H333afhw4fbHiYBAABqSp0KlPXRb7/9pkceeUS//fabYmNjNWzYMD322GNOlwUAAFBpBEqH3Xvvvbr33nudLgMAAKDa6txV3gAAADi5nNSB0qHrheotJkIHAAA14aQc8vZ4PHK5XNq/f7+aNm3KMmYWGWOUl5en/fv3KyQkRGFhYU6XBNQ7LpdLcXFxgW0ACCYnZaAMDQ1Vq1attHPnTm3fvt3pcuoNn8+nNm3aKCTkpO6YBuokn8/H5xWAoHVSBkpJioyMVIcOHZSfn+90KfVCaGio3G43PScAAMB2J22glI6FoNDQUKfLAAAAQAUY+wQAG2RnZ6tnz57q2bOnsrNrZ3lYADhZnNQ9lABQVxQVFWndunWBbQAIJvRQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEq7yBgCbxMTEOF0CADiCQAkANvD7/dq/f7/TZQCAIxjyBgAAgCUESgAAAFhCoAQAG2RnZysxMVGJiYksvQgg6HAOJQDYoKioSJ988klgGwCCCT2UAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhKu8AcAmPp/P6RIAwBEESgCwgd/vV2ZmptNlAIAjCJQAAGXkZCgrP8vpMoAa5fP4FO2NdrqMeolACQBBLiMnQ4+uelTpWelOlwLUqBhfjB7u9zChsgYQKAHABjk5Obr66qslSW+++aa8Xq/DFVVeVn6W0rPSFeGOkM/DeaCon4rf51n5WQTKGkCgBAAbFBYW6r333gts10U+j09R4VFOlwHUmOyCbKdLqLeYNggAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJ0wYBgA38fr+MMU6XAQCOoIcSAAAAlhAoAQAAYAmBEgBskJOTo2HDhmnYsGHKyclxuhwAqFUESgCwQWFhod544w298cYbdXbpRQCoLgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEpZeBAAb+Hw+HT16NLANAMGEQAkANnC5XPL7/U6XAQCOYMgbAAAAlhAoAcAGubm5SklJUUpKinJzc50uBwBqFYESAGxQUFCgOXPmaM6cOSooKHC6HACoVQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJayUAwA28Pl82rdvX2AbAIIJgRIAbOByudS0aVOnywAARzDkDQAAAEsIlABgg9zcXN1222267bbbWHoRQNAhUAKADQoKCjRjxgzNmDGDpRcBBB0CJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBJWygEAG0RERGjbtm2BbQAIJgRKALBBSEiI2rZt63QZAOAIhrwBAABgCYESAGyQl5eniRMnauLEicrLy3O6HACoVQRKALBBfn6+nnzyST355JPKz893uhwAqFUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCWslAMANoiIiNC3334b2AaAYEKgBAAbhISEqEuXLk6XAQCOYMgbAAAAltBDCQA2yMvL09SpUyVJDz74oMLCwhyuCABqD4ESAGyQn5+vKVOmSJImTpxIoAQQVBjyBgAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgA6/Xq7Vr1wa2ASCYECgBwAahoaHq2bOn02UAgCMY8gYAAIAl9FACgA3y8vL0zDPPSJLuuusuVsoBEFQIlABgg/z8fN17772SpFtvvZVACSCoMOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGXq9XK1euDGwDQDAhUAKADUJDQ5WYmOh0GQDgCIa8AQAAYAk9lABgg/z8fP3v//6vJGncuHHyeDwOVwQAtYdACQA2yMvL0+233y5JSklJIVACCCoMeQMAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh2iAAsEF4eLiWLVsW2AaAYEKgBAAbuN1uDRo0yOkyAMARDHkDAADAEnooAcAG+fn5mjdvniTpuuuuY6UcAEGFQAkANsjLy9OYMWMkScOGDSNQAggqDHkDAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYdogALBBeHi4Fi5cGNgGgGBCoAQAG7jdbg0bNszpMgDAEQx5AwAAwBJ6KAHABgUFBVq8eLEk6aqrrpLbzccrgODBJx4A2CA3N1fDhw+XJB09epRACSCoMOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhHktAMAGYWFhmjVrVmAbAIIJgRIAbODxeJSSkuJ0GQDgCIa8AQAAYAk9lABgg4KCAq1YsUKSNGDAAFbKARBU+MQDABvk5ubqsssuk8TSiwCCD0PeAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAAS5jXAgBsEBYWpueffz6wDQDBhEAJADbweDy67bbbnC4DABzBkDcAAAAsoYcSAGxQWFioTz/9VJJ0wQUXKDQ01OGKAKD2ECgBwAY5OTlKSkqSdGzpRb/f73BFAFB7GPIGAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwrRBAGADj8ejadOmBbYBIJgQKAHABmFhYZo4caLTZQCAIxjyBgAAgCX0UAKADQoLC/XVV19JkuLj41l6EUBQIVACgA1ycnLUq1cvSSy9CCD4MOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGHo9HkyZNCmwDQDAhUAKADcLCwjR58mSnywAARzDkDQAAAEvooQQAGxQVFWnLli2SpE6dOikkhL/XAQQPAiUA2CA7O1tdu3aVxNKLAIIPf0IDAADAEgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsYdogALCBx+PRhAkTAtsAEEwIlABgg7CwMP3tb39zugwAcARD3gAAALCEHkoAsEFRUZF27NghSWrTpg1LLwIIKgRKALBBdna22rVrJ4mlFwEEH/6EBgAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMK0QQBgA7fbrVtvvTWwDQDBhE89ALBBeHi4/vGPfzhdBgA4giFvAAAAWEIPJQDYwBij9PR0SVJMTIxcLpfDFQFA7SFQAoANsrKy1KxZM0ksvQgg+DDkDQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRpgwDABm63W6NHjw5sA0Aw4VMPAGwQHh6u2bNnO10GADiCIW8AAABYQg8lANjAGKOsrCxJks/nY+lFAEGFHkoAsEFWVpYiIyMVGRkZCJYAECwIlAAAALCEQAkAAABLCJQAAACwhEAJAAAASwiUAAAAsIRpgwAAkqSsfK5OR/3F+7tmESgBwAahoaEaOnRoYLsu8Xl8ivHFKD0rXdkF2U6XA9SYGF+MfB6f02XUSy5jjKnKHYqKivTzzz/rwIEDcrlcaty4sU499VSFhFRt9Pzw4cOKjo5WRkaGGjRoUKX7AgDslZGTQQ8O6j2fx6dob7TTZdQplc1rle6h/OGHH/TII4/onXfeUXZ2yb9gIyIiNHjwYE2aNEkdO3asftUAAEdEe6P5RQug2ioVKNevX6/ExESFh4fr+uuv15lnnqnGjRtLkn7//Xd9/fXXWrx4sd5991198sknOuuss2q0aAAAAJw8KjXk3b9/f+Xk5Ojdd99VVFRUmW2OHDmiyy67TF6vVytWrDjhgRnyBlCfZGZmKjIyUpJ09OhR+f1+hysCAOtsHfJes2aNFi1aVG6YlKSoqCjdf//9Gj58eNWrBQAAQJ1VqStp3G63cnNzT9guLy9PbjcXjgMAAASTSgXKpKQkPfzww9q5c2e5bXbt2qVJkybpwgsvtK04AAAAnPwq1Z04ffp09e3bV6eddpouvPDCwEU5LpdLBw4c0DfffKOPP/5YTZo00eLFi2u6ZgAAAJxEKhUo27Vrp40bN2ratGlasmSJVqxYoeJreVwul0477TTdddddmjBhgmJiYmq0YAAAAJxcqjyxuSTl5OTo4MGDkqRGjRrJ6/VW+cBc5Q2gPuEqbwD1ke0Tmx/P6/UqNja22sUBQH0TGhqq5OTkwDYABBMuyQYAG3i9Xr377rtOlwEAjqjaAtwAAADAHxAoAQAAYAmBEgBskJmZKb/fL7/fr8zMTKfLAYBaxTmUAGCTrKwsp0sAAEfQQwkAAABLLAXKiRMn6tFHH7WrFgAAANRB1ZrYXJJ2796tNm3aKDw8XHv37g1M6FtZTGwOoD5hYnMA9VFl81q1eygXLFigmJgYeTwevfnmm9V9GAAAANRx1Q6Ur732moYNG6bLL79c8+fPt7MmAAAA1CHVusr7xx9/1FdffaWnn35aBw8e1JAhQ7R//341bdrU7voAoE4ICQlRQkJCYBsAgkm1AuX8+fPVqlUr9enTR/n5+YqMjNTChQt122232V0fANQJERERSk1NdboMAHBEtf6Mnj9/voYPHy5J8ng8uuqqq/Taa6/ZWhgAAADqhioHyg0bNmjr1q265pprAvuGDx+uzz//XL/88outxQEAAODkV+VAOX/+fJ166qk655xzAvsuvvhiNWnShItzAAStzMxMNW3aVE2bNmXpRQBBp8qB8vXXX9eIESNK7AsNDdWQIUMY9gYQ1NLT05Wenu50GQBQ66oUKH/88Uedeuqpuv7660vdlpKSoiZNmmjv3r22FQcAAICTX7VXyrGKlXIA1CeslAOgPqrxlXIAAAAAiUAJAAAAiwiUAAAAsKRaK+UAAEoKCQlRjx49AtsAEEwIlABgg4iICKWlpTldBgA4olJ/Rq9atUpHjx6t6VoAAABQB1UqUCYlJWnz5s01XQsAAADqoEoFSoemqgSAOiMrK0tt27ZV27ZtlZWV5XQ5AFCrOIcSAGxgjNEvv/wS2AaAYFLpSxFdLldN1gEAAIA6qtI9lElJSZWaCsPlcikjI8NSUQAAAKg7Kh0oExMT1bRp05qsBQAAAHVQpQPlI488ol69etVkLQAAAKiDWM4BAAAAljh+lXdmZqZCQ0NL7Q8NDZXX6y3RrjwhISGKiIioVtusrKxyr8h0uVzy+XzVapudna2ioqJy6/D7/dVqm5OTo8LCQlva+ny+wMVWubm5KigosKVtRERE4HzbvLw85efn29LW6/UG3itVaZufn6+8vLxy24aHh8vtdle5bUFBgXJzc8ttGxYWJo/HU+W2hYWFysnJKbetx+NRWFhYldsWFRUpOzvblrZut1vh4eGSjl3RXNE0OVVpW5Wf+5PtM8LlcqlTp07lPkc+I/4PnxHH8BlR9bZ1+TOiqm1Pls+Iil6LEkwluFwu88UXX1SmaaVlZGQYSeV+JScnl2jv8/nKbZuQkFCibUxMTLlte/ToUaJtXFxcuW07d+5com3nzp3LbRsXF1eibY8ePcptGxMTU6JtQkJCuW19Pl+JtsnJyRW+bscbOnRohW2PHj0aaDt69OgK2+7bty/Q9tZbb62w7bZt2wJtJ0yYUGHbb7/9NtB20qRJFbZdu3ZtoO20adMqbLty5cpA2+eff77CtsuWLQu0nTVrVoVtFy5cGGi7cOHCCtvOmjUr0HbZsmUVtn3++ecDbVeuXFlh22nTpgXarl27tsK2kyZNCrT99ttvK2w7YcKEQNtt27ZV2PbWW28NtN23b1+FbUePHh1oe/To0QrbDh06tMR7uKK2fEYc++Iz4v+++Iw49sVnxLEvPiOOfdn1GZGRkWEqUqkeyopSLwAAAIKb6/8n/Fp3+PBhRUdHa/fu3WrQoEGp2+mqLrstw1kMZzGcVfW2fEZUry2fEcfwGVH1tnxGHFMfPiMOHjyoli1bKiMjo8y8Fqjf6UB5ogIBoC7IyspSz549JUlpaWklfjEAQF1V2bzm+EU5AFAfGGO0efPmwDYABBOmDQIAAIAlBEoAAABYUu0h74yMDH3//fdlnpTbr18/S0UBAACg7qhyoCwoKNAtt9yiV155pdyrhCq6eggAAAD1S5WHvP/+97/rnXfe0cyZM2WM0fPPP68XXnhBPXr0UIcOHfT+++/XRJ0AAAA4SVU5UM6dO1cPPfSQrr32WklS7969deONN+qLL75QXFycVq5caXuRAHCyc7lciouLU1xcXGA+RgAIFlUOlD///LPOOuuswESzx0+Yesstt2jevHn2VQcAdYTP59P27du1fft25qAEEHSqHCj9fr/y8vLkcrnUuHFj/fLLL4HbIiIidODAAVsLBAAAwMmtyoHyjDPO0LZt2yRJ559/vp566int3LlT+/bt07Rp03T66afbXiQAAABOXlW+ynvEiBH6/vvvJUlTpkxRv379FBcXJ+nYOp9vvfWWvRUCQB2QnZ0dmDJt1apVJdb6BYD6zvJa3r/++quWLFkil8ulSy65pNI9lKzlDaA+yczMVGRkpCTp6NGj8vv9DlcEANbV2FreO3bsUGxsrDwejySpdevWuuOOOyQdm6Nyx44datOmTTXLBgAAQF1T5XMo27Vrp/Xr15d528aNG9WuXTvLRQEAAKDuqHKgrGiEvLCwkPnXAAAAgkyVA6WkMkNjbm6u3n//fcXExFguCgAAAHVHpc6hnDJliv7yl79IOhYmzz333HLb3njjjfZUBgAAgDqhUoGyV69euvXWW2WM0YwZMzR06FA1b968RJvw8HB169ZNI0eOrJFCAeBkxwgNgGBVqUB56aWX6tJLL5V0bGqMRx55hItvAOA4fr9f+/fvd7oMAHBElacNmjVrVk3UAQAAgDqqUoFy1apVVXrQ4tUiAAAAUP9VKlAmJiYGruw2xpQ7NVDxbYWFhfZVCAB1QHZ2duDUoPfff5+lFwEElUoFypUrV9Z0HQBQpxUVFemTTz4JbANAMKlUoExISKjpOgAAAFBHVWti82Jbt27V6tWrlZmZaVc9AAAAqGOqFShfeeUVtWrVSp07d1a/fv20detWSdLw4cP14osv2logAAAATm5VDpSLFi1SSkqK4uPj9fzzz5dY2zs+Pl4LFy60tUAAAACc3KocKB9//HGNGTNGS5cu1bhx40rc1qlTJ23evNm24gAAAHDyq3Kg3LJli6655poyb2vcuLEOHDhguSgAqIt8Pp98Pp/TZQBAravySjk+n08ZGRll3rZr1y41atTIclEAUNf4/X4uUAQQtKrcQ9mnT59S504Wmz17thITE+2oCwAAAHVElXsoH3nkEfXt21e9evXSyJEj5XK59NZbb2nSpElatWqV1q5dWxN1AgAA4CRV5R7KHj166P3339fRo0c1fvx4GWM0depUff/993rvvffUtWvXmqgTAE5qOTk5GjRokAYNGqScnBynywGAWuUyZY1dV9JPP/2kvXv3KiYmRh07dqzSfQ8fPqzo6GhlZGSoQYMG1S0BAE4KmZmZioyMlCQdPXpUfr/f4YoAwLrK5rUqD3kfr3379mrfvr2VhwAAAEAdV6VAuX//fr3wwgtatWqVdu/eLUlq2bKlkpKSNG7cODVp0qRGigQAAMDJq9JD3h999JGuvvpqHT58WKGhoYqJiZExRgcOHFBhYaEaNWqkxYsXq1+/fpU6MEPeAOoThrwB1EeVzWuVuihn//79GjFihKKjo7Vw4UJlZGRoz549+u2335SRkaHXX39dfr9fQ4cOZWJzAACAIFOpQPnyyy+rsLBQq1ev1tChQ0usBOHz+TR8+HB99tlnys/P18svv1xjxQIAAODkU6lA+cEHH+iGG25Qq1atym3Tpk0bjRkzRsuXL7etOAAAAJz8KhUot2zZor59+56w3QUXXKAtW7ZYLgoA6hq/3y9jjIwxnD8JIOhUKlAeOnRIzZo1O2G7Zs2a6dChQ1ZrAgAAQB1SqUCZm5srj8dzwnZut1t5eXmWiwIAAEDdUel5KLdu3Sq3u+Lm3333neWCAKAuysnJ0ahRoyRJc+fOldfrdbgiAKg9lZqHMiQkRC6X64QPZoyRy+VSYWHhCdsyDyWA+oR5KAHUR7YuvThr1izbCgMAAED9UqlAOXr06JquAwAAAHVUpS7KAQAAAMpDoAQAAIAlBEoAAABYQqAEAACAJZWehxIAUD6fz6ejR48GtgEgmBAoAcAGLpeLuScBBC2GvAEAAGAJgRIAbJCbm6uUlBSlpKQoNzfX6XIAoFZVaunFmsDSiwDqE5ZeBFAfVTav0UMJAAAASwiUAAAAsISrvB2QkSFlZTldBVCzfD4pOtrpKgAAtYFAWcsyMqRHH5XS052uBKhZMTHSww8TKgEgGBAoa1lW1rEwGRFxrAcHqI+K3+dZWQRKAAgGBEqH+HxSVJTTVQA1Jzvb6QoAALWFQAkANvD5fNq3b19gGwCCCYESAGzgcrnUtGlTp8sAAEcwbRAAAAAsIVACgA1yc3N122236bbbbmPpRQBBh0AJADYoKCjQjBkzNGPGDBUUFDhdDgDUKgIlAAAALCFQAgAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAElbKAQAbREREaNu2bYFtAAgmBEoAsEFISIjatm3rdBkA4AiGvAEAAGAJgRIAbJCXl6eJEydq4sSJysvLc7ocAKhVBEoAsEF+fr6efPJJPfnkk8rPz3e6HACoVQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJayUAwA2iIiI0LfffhvYBoBgQqAEABuEhISoS5cuTpcBAI5gyBsAAACW0EMJADbIy8vT1KlTJUkPPvigwsLCHK4IAGoPgRIAbJCfn68pU6ZIkiZOnEigBBBUGPIGAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwrRBAGADr9ertWvXBrYBIJgQKAHABqGhoerZs6fTZQCAIxjyBgAAgCX0UAKADfLy8vTMM89Iku666y5WygEQVAiUAGCD/Px83XvvvZKkW2+9lUAJIKgw5A0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEaYMAwAZer1crV64MbANAMCFQAoANQkNDlZiY6HQZAOAIhrwBAABgCT2UAGCD/Px8/e///q8kady4cfJ4PA5XBAC1h0AJADbIy8vT7bffLklKSUkhUAIIKgx5AwAAwBICJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALGHaIACwQXh4uJYtWxbYBoBgQqAEABu43W4NGjTI6TIAwBEMeQMAAMASeigBwAb5+fmaN2+eJOm6665jpRwAQYVACQA2yMvL05gxYyRJw4YNI1ACCCoMeQMAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh2iAAsEF4eLgWLlwY2AaAYEKgBAAbuN1uDRs2zOkyAMARDHkDAADAEnooAcAGBQUFWrx4sSTpqquuktvNxyuA4MEnHgDYIDc3V8OHD5ckHT16lEAJIKgw5A0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEeS0AwAZhYWGaNWtWYBsAggmBEgBs4PF4lJKS4nQZAOAIhrwBAABgCT2UAGCDgoICrVixQpI0YMAAVsoBEFT4xAMAG+Tm5uqyyy6TxNKLAIIPQ94AAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLmNcCAGwQFham559/PrANAMGEQAkANvB4PLrtttucLgMAHMGQNwAAACyhhxIAbFBYWKhPP/1UknTBBRcoNDTU4YoAoPYQKAHABjk5OUpKSpJ0bOlFv9/vcEUAUHsY8gYAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCtEEAYAOPx6Np06YFtgEgmBAoAcAGYWFhmjhxotNlAIAjGPIGAACAJfRQAoANCgsL9dVXX0mS4uPjWXoRQFAhUAKADXJyctSrVy9JLL0IIPgw5A0AAABLCJQAAACwhEAJAAAASwiUAAAAsIRACQAAAEsIlAAAALCEaYMAwAYej0eTJk0KbANAMCFQAoANwsLCNHnyZKfLAABHMOQNAAAAS+ihBAAbFBUVacuWLZKkTp06KSSEv9cBBA8CJQDYIDs7W127dpXE0osAgg9/QgMAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBICJQAAACxh2iAAsIHH49GECRMC2wAQTAiUAGCDsLAw/e1vf3O6DABwBEPeAAAAsIQeSgCwQVFRkXbs2CFJatOmDUsvAggqBEoAsEF2drbatWsniaUXAQQf/oQGAACAJQRKAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwrRBAGADt9utW2+9NbANAMGETz0AsEF4eLj+8Y9/OF0GADiCIW8AAABYQg8lANjAGKP09HRJUkxMjFwul8MVAUDtIVACgA2ysrLUrFkzSSy9CCD4MOQNAAAASwiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhGmDAMAGbrdbo0ePDmwDQDDhUw8AbBAeHq7Zs2c7XQYAOIIhbwAAAFhCDyUA2MAYo6ysLEmSz+dj6UUAQYUeSgCwQVZWliIjIxUZGRkIlgAQLAiUAAAAsIRACQAAAEsIlAAAALCEQAkAAABLCJQAAACwhEAJAAAAS5iHEgBsEBoaqqFDhwa2ASCYECgBwAZer1eLFi1yugwAcARD3gAAALCEQAkAAABLCJQAYIPMzEy5XC65XC5lZmY6XQ4A1CoCJQAAACwhUAIAAMASAiUAAAAsIVACAADAEgIlAAAALCFQAgAAwBJWygEAG4SGhio5OTmwDQDBhEAJADbwer169913nS4DABzBkDcAAAAsIVACAADAEgIlANggMzNTfr9ffr+fpRcBBB3OoQQAm2RlZTldAgA4gh5KAAAAWEKgBAAAgCUESgAAAFhCoAQAAIAlBEoAAABYwlXeAGCDkJAQJSQkBLYBIJgQKAHABhEREUpNTXW6DABwBH9GAwAAwBICJQAAACwhUAKADTIzM9W0aVM1bdqUpRcBBB3OoXQIK7ShPgvW93d6errTJQCAIwiUtcznk2JipPR0KTvb6WqAmhMTc+z9DgCo/wiUtSw6Wnr44eDtwUHw8PmOvd8BAPUfgdIB0dH8ogUAAPUHF+UAAADAEgIlAAAALGHIGwBsEBISoh49egS2ASCYECgBwAYRERFKS0tzugwAcAR/RgMAAMASAiUAAAAsIVACgA2ysrLUtm1btW3bVllMNAsgyHAOJQDYwBijX375JbANAMGEHkoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCUESgAAAFjCVd4AYAOXy6XOnTsHtgEgmBAoAcAGPp9PmzZtcroMAHAEQ94AAACwhEAJAAAASwiUAGCDrKwsdenSRV26dGHpRQBBh3MoAcAGxhht3rw5sA0AwYQeSgAAAFhCoAQAAIAlBEoAAABYQqAEAACAJQRKAAAAWMJV3gBgA5fLpbi4uMA2AAQTAiUA2MDn82n79u1OlwEAjmDIGwAAAJYQKAEAAGAJgRIAbJCdna2ePXuqZ8+eys7OdrocAKhVnEMJADYoKirSunXrAtsAEEzooQQAAIAlBEoAAABYQqAEAACAJQRKAAAAWEKgBAAAgCVc5Q0ANomJiXG6BABwBIESAGzg9/u1f/9+p8sAAEcw5A0AAABLCJQAAACwhEAJADbIzs5WYmKiEhMTWXoRQNDhHEoAsEFRUZE++eSTwDYABBN6KAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAlXeQOATXw+n9MlAIAjCJQAYAO/36/MzEynywAARzDkDQAAAEsIlAAAALCEQAkANsjJydGgQYM0aNAg5eTkOF0OANQqzqEEABsUFhbqvffeC2wDQDChhxIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJY4dpW3MUaSdPjwYadKAADbHL9KzuHDh7nSG0C9UJzTinNbeRwLlEeOHJEktW7d2qkSAKBGtGzZ0ukSAMBWR44cUXR0dLm3u8yJImcNKSoq0u7duxUVFSWXy+VECQAAAKiAMUZHjhxRy5YtFRJS/pmSjgVKAAAA1A9clAMAAABLCJQAAACwhEAJAAAASwiUAAAAsIRACcARX3zxha666iq1adNG4eHhat68uc477zyNHz++RLsZM2Zo9uzZlX7c1NRUuVwupaamVthu9uzZcrlcgS+3263Y2Fhdc801+uGHH6rxjI6ZOnWqlixZUu26nPLQQw+pe/fuaty4sbxer0499VSNGzdOv/zyi9OlAagDCJQAat27776r888/X4cPH9a0adP0wQcf6JlnnlGfPn20YMGCEm2rGiiratasWVqzZo3+/e9/6/bbb9fSpUvVt29fHTx4sFqPV16gjI+P15o1axQfH2+x4ppx6NAhXXvttZozZ46WL1+uCRMmaNmyZerdu7cOHDjgdHkATnKOTWwOIHhNmzZN7dq104oVK+R2/9/H0DXXXKNp06bVai1du3ZVjx49JEmJiYkqLCzUpEmTtGTJEo0ZM8a24zRo0EDnnnuubY8nSVu3btXpp59uy2P94x//KPH/xMREtWvXTsnJyXr77bd1ww032HIcAPUTPZQAat2BAwcUExNTIkwWO37i3LZt22rTpk365JNPAkPTbdu2Ddz+3XffaeDAgfL5fIqJidEtt9wSWIWruorD5d69ewP7cnJyNH78eJ199tmKjo5W48aNdd555+ntt98ucV+Xy6XMzEzNmTMnUG9iYqKk8oe8ly5dqvPOO08+n09RUVG65JJLtGbNmkrVesYZZ+icc87Rk08+qZ07d1b/SZejadOmklTm9wkAjkegBFDrzjvvPH3xxRe688479cUXXyg/P7/MdosXL9app56q7t27a82aNVqzZo0WL14s6VjgS0hI0LfffqsZM2Zo7ty5Onr0qG6//XZLtW3btk2S1LFjx8C+3Nxc/f7775owYYKWLFmi+fPnq2/fvhoyZIheeeWVQLs1a9YoIiJCycnJgXpnzJhR7rFee+01DR48WA0aNND8+fP18ssv6+DBg0pMTNRnn312wlo//PBDde/eXY8//rjatGmjhIQE/etf/1J6enq1n39BQYGys7O1fv16/fnPf1bHjh01ZMiQaj8egCBhAKCWpaenm759+xpJRpLxeDzm/PPPN48//rg5cuRIibZdunQxCQkJpR7jvvvuMy6Xy2zYsKHE/ksuucRIMitXrqywhlmzZhlJ5vPPPzf5+fnmyJEjZvny5aZFixamX79+Jj8/v9z7FhQUmPz8fDN27FjTvXv3Erf5/X4zevToUvdZuXJliboKCwtNy5YtTbdu3UxhYWGg3ZEjR0yzZs3M+eefX2H9x8vLyzPLli0z119/vYmKijJut9skJyebuXPnlno9K7Jnz57A90SS6d27t9m1a1el7w8geNFDCaDWNWnSRJ9++qnS0tL0xBNPaPDgwfr+++/1wAMPqFu3bpXqYVu5cqW6dOmis846q8T+kSNHVqmWc889Vx6PR1FRURo4cKAaNWqkt99+u9Qw76JFi9SnTx9FRkbK7XbL4/Ho5Zdf1pYtW6p0vGJbt27V7t27NWrUqBLD/JGRkbr66qv1+eefKysrq1KP5fF4NGjQIM2dO1f79u3T66+/Lr/fr3HjxqlZs2ZatGhRpR4nJiZGaWlp+uyzz/Tiiy/q999/V1JSkvbs2VOt5wggeBAoATimR48euu+++7Ro0SLt3r1bd999t7Zv316pC3MOHDigFi1alNpf1r6KvPLKK0pLS9PHH3+sm2++WVu2bNG1115bos1bb72l4cOH65RTTtGrr76qNWvWKC0tTTfccINycnKqdLzj65ek2NjYUre1bNlSRUVF1brSPDs7WxkZGcrIyFB+fr78fr+8Xm+l7ut2u9WjRw/16dNHN954oz7++GP9/PPPeuKJJ6pcB4DgwpnWAE4KHo9HkyZN0t///nd9++23J2zfpEkT/fbbb6X2l7WvIp06dQpciJOUlKTCwkK99NJLeuONNzR06FBJ0quvvqp27dppwYIFcrlcgfvm5uZW6Vh/rF9Smb1/u3fvVkhIiBo1alSpxzpy5Ijefvttvf766/rggw8UHh6uwYMH6+2331b//v2rfVFNq1at1LJlS33//ffVuj+A4EEPJYBaV94QavHwccuWLQP7wsPDlZ2dXaptUlKSNm3apI0bN5bY/9prr1mqbdq0aWrUqJEeeeQRFRUVSTp29XZYWFiJMPnbb7+Vusq7onr/6PTTT9cpp5yi1157TcaYwP7MzEy9+eabgSu/K7JgwQINGTJEzZo109ixYxUaGhoY9n711VeVnJxs6QrtH3/8UTt37tRpp51W7ccAEBwIlABq3YABA5ScnKx//vOfWrlypT766CNNnz5dQ4YMUWRkpO66665A227dumnjxo1asGCB0tLS9M0330iS/vznPysmJkaDBg3S7Nmz9f777+v666/Xd999Z6m2Ro0a6YEHHtCWLVsC4fSyyy7T1q1bdeutt+rjjz/WnDlz1Ldv3zKHq7t166bU1FS98847WrdunbZu3VrmcUJCQjRt2jRt2LBBl112mZYuXapFixYpKSlJhw4dqtQw88iRI3Xo0CE999xz2rt3r95++22NGDFCERERVXrOX3/9tS666CL985//1IoVK/Thhx/qqaeeUlJSkpo0aaIJEyZU6fEABCGnrwoCEHwWLFhgRo4caTp06GAiIyONx+Mxbdq0MaNGjTKbN28u0Xb79u2mf//+JioqykgycXFxgds2b95sLrnkEuP1ek3jxo3N2LFjzdtvv12lq7zT0tJK3ZadnW3atGljOnToYAoKCowxxjzxxBOmbdu2Jjw83HTq1Mm8+OKLZtKkSeaPH6MbNmwwffr0MT6fz0gKXKH+x6u8iy1ZssT07t3beL1e4/f7zUUXXWRWr15dqddx9+7dlWp3Ir/99pu5/vrrTfv27Y3P5zNhYWHm1FNPNbfccovZsWOHLccAUL+5jDlurAUAAACoIoa8AQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgCYESAAAAlhAoAQAAYAmBEgAAAJYQKAEAAGAJgRIAAACWECgBAABgyf8DMqRsX8rsLF8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Analyze event data \n", "event_number = len(event_names)\n", "\n", "for i in range(1, 2*event_number, 2):\n", " event_name = event_names[i//2]\n", " event_start_time = event_start_times[i//2]\n", " event_end_time = event_end_times[i//2]\n", " \n", " print(f\"Event {i//2+1}: {event_name}\")\n", " print(f\"Start time: {float(event_start_time)/1000000: .3f} sec, End time: {float(event_end_time)/1000000: .3f} sec\")\n", " \n", " # Get event signal data with event time duration\n", " mask_LL = (signal_left_lateral_RMS.index >= event_start_time) & (signal_left_lateral_RMS.index <= event_end_time)\n", " event_signal_LL = signal_left_lateral_RMS.iloc[mask_LL]\n", " \n", " mask_LM = (signal_left_medial_RMS.index >= event_start_time) & (signal_left_medial_RMS.index <= event_end_time)\n", " event_signal_LM = signal_left_medial_RMS.iloc[mask_LM]\n", " \n", " mask_RL = (signal_right_lateral_RMS.index >= event_start_time) & (signal_right_lateral_RMS.index <= event_end_time)\n", " event_signal_RL = signal_right_lateral_RMS.iloc[mask_RL]\n", " \n", " mask_RM = (signal_right_medial_RMS.index >= event_start_time) & (signal_right_medial_RMS.index <= event_end_time)\n", " event_signal_RM = signal_right_medial_RMS.iloc[mask_RM]\n", " \n", " # Calculate std ratio \n", " left_event_std = event_signal_LL.std()\n", " left_std_ratio = left_event_std / signal_left_lateral_basics_10s_std\n", " \n", " right_event_std = event_signal_RL.std()\n", " right_std_ratio = right_event_std / signal_right_lateral_basics_10s_std\n", " \n", " print(f\"left std ratio: {left_std_ratio: .3f}, right std ratio: {right_std_ratio: .3f}\")\n", " \n", " # Get signal max value index\n", " LL_max_index = event_signal_LL.idxmax()\n", " LM_max_index = event_signal_LM.idxmax()\n", " left_delta_t = LM_max_index - LL_max_index\n", " print(f\"LM_max_index: {float(LM_max_index)/1000000: .3f}, LL_max_index: {float(LL_max_index)/1000000: .3f}, left delta t: {float(left_delta_t)/1000000: .3f}\")\n", " \n", " RL_max_index = event_signal_RL.idxmax()\n", " RM_max_index = event_signal_RM.idxmax()\n", " right_delta_t = RM_max_index - RL_max_index\n", " print(f\"RM_max_index: {float(RM_max_index)/1000000: .3f}, RL_max_index: {float(RL_max_index)/1000000: .3f}, right delta t: {float(right_delta_t)/1000000: .3f}\")\n", " \n", " # Plot with each event data\n", " emg_plot(i//2+1, event_name, left_std_ratio, left_delta_t, right_std_ratio, right_delta_t)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "snomed", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }