from ultralytics import YOLO import gradio as gr import torch from utils.tools_gradio import fast_process from utils.tools import format_results, box_prompt, point_prompt, text_prompt from PIL import ImageDraw,Image import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import io model = YOLO('./weights/FastSAM-x.pt') device = torch.device( "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" ) def segment_everything( input, input_size=1024, withContours=True, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, use_retina=True, wider=False, mask_random_color=True, ): input_size = int(input_size) w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size,) annotations = results[0].masks.data fig = fast_process(annotations=annotations, image=input, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours,) bboxes = results[0].boxes.data areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1]) _, largest_indices = torch.topk(areas, 2) largest_boxes = bboxes[largest_indices] for i, box in enumerate(largest_boxes): print(f"Largest Box {i+1}: {box.tolist()}") fig, ax = plt.subplots(1) ax.imshow(input) for box in largest_boxes: x1, y1, x2, y2 = box[:4] rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, edgecolor='r', facecolor='none') ax.add_patch(rect) ax.axis('off') buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0) plt.close(fig) buf.seek(0) cropped_image = Image.open(buf) return fig,cropped_image title = "
🏃 Fast Segment Anything 🤗
" description = """ # 🎯 Instructions for points mode """ examples = [["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"], ["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"]] default_example = examples[0] cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil') segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil') input_size_slider = gr.components.Slider(minimum=512,maximum=1024,value=1024,step=64,label='Input_size',info='Our model was trained on a size of 1024') css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" demo = gr.Interface( segment_everything, inputs = [ gr.Image(label="Input", value=default_example[0], type='pil'), gr.components.Slider(minimum=512,maximum=1024,value=1024,step=64,label='Input_size',info='Our model was trained on a size of 1024'), gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks') ], outputs = [ gr.Image(label="Segmented Image", interactive=False, type='pil'), gr.Image(label="Cropped Image", interactive=False, type='pil') ], title = title, description = description, examples = examples, ) demo.launch()