I0210 12:02:02.231461 140467004882944 graph.py:498] napoleon I0210 12:02:02.231686 140467004882944 graph.py:499] a1 a2 a3 = triangle; b3 = on_circle a1 a2, s_angle a1 a2 b3 60; b1 = on_circle a2 a3, s_angle a2 a3 b1 60; b2 = on_circle a3 a1, s_angle a3 a1 b2 60; c1 = circumcenter b1 a2 a3; c2 = circumcenter b2 a3 a1; c3 = circumcenter b3 a1 a2 ? cong c1 c2 c1 c3 I0210 12:02:42.035380 140467004882944 alphageometry.py:191] ========================== * From theorem premises: A1 A2 A3 B3 B1 B2 C1 C2 C3 : Points A_1B_3 = A_1A_2 [00] ∠B_3A_2A_1 = 1_PI/3 [01] ∠A_1A_2B_3 = 2_PI/3 [02] A_2B_1 = A_2A_3 [03] ∠B_1A_3A_2 = 1_PI/3 [04] ∠A_2A_3B_1 = 2_PI/3 [05] A_3B_2 = A_3A_1 [06] ∠B_2A_1A_3 = 1_PI/3 [07] ∠A_3A_1B_2 = 2_PI/3 [08] C_1A_2 = C_1A_3 [09] C_1B_1 = C_1A_2 [10] C_2B_2 = C_2A_3 [11] C_2A_3 = C_2A_1 [12] C_3A_1 = C_3A_2 [13] C_3B_3 = C_3A_1 [14] * Auxiliary Constructions: : Points * Proof steps: 001. C_1A_3 = A_2C_1 [09] ⇒ C_1A_3:C_2A_3 = C_1A_3:C_2A_3 [15] 002. C_2B_2 = C_2A_3 [11] & C_2A_3 = C_2A_1 [12] ⇒ C_2A_1 = C_2B_2 [16] 003. A_3B_2 = A_3A_1 [06] & C_2A_1 = C_2B_2 [16] ⇒ A_1B_2 ⟂ A_3C_2 [17] 004. C_1B_1 = C_1A_2 [10] & C_1A_2 = C_1A_3 [09] ⇒ C_1A_3 = C_1B_1 [18] 005. A_2B_1 = A_2A_3 [03] & C_1A_3 = C_1B_1 [18] ⇒ A_3B_1 ⟂ A_2C_1 [19] 006. A_1B_2 ⟂ A_3C_2 [17] & A_3B_1 ⟂ A_2C_1 [19] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] 007. ∠B_2A_1A_3 = 1_PI/3 [07] & ∠B_1A_3A_2 = 1_PI/3 [04] ⇒ ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] 008. ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠C_1A_2A_3 = ∠C_2A_3A_1 [22] 009. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] 010. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠A_3A_2B_1 = ∠A_2C_1B_1 [24] 011. A_2B_1 = A_2A_3 [03] & C_1A_2 = C_1A_3 [09] & C_1B_1 = C_1A_2 [10] (SSS)⇒ ∠A_3A_2C_1 = ∠A_2B_1C_1 [25] 012. A_3B_2 = A_3A_1 [06] ⇒ ∠A_1B_2A_3 = ∠A_3A_1B_2 [26] 013. A_2B_1 = A_2A_3 [03] ⇒ ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] 014. ∠A_1B_2A_3 = ∠A_3A_1B_2 [26] & ∠A_3A_1B_2 = 2_PI/3 [08] & ∠A_2A_3B_1 = 2_PI/3 [05] & ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] ⇒ ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] 015. ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠B_2A_3A_1 = ∠B_1A_2A_3 [29] 016. ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] & ∠B_1A_3A_2 = ∠B_2A_1A_3 [21] ⇒ ∠(A_3B_2-A_2B_1) = ∠A_1A_3A_2 [30] 017. A_3B_2 = A_3A_1 [06] & C_2A_3 = C_2A_1 [12] & C_2B_2 = C_2A_3 [11] (SSS)⇒ ∠B_2A_3A_1 = ∠A_3C_2A_1 [31] 018. ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] & ∠B_2A_3A_1 = ∠B_1A_2A_3 [29] & ∠B_2A_3A_1 = ∠A_3C_2A_1 [31] ⇒ ∠A_3C_2A_1 = ∠A_2C_1A_3 [32] 019. ∠C_1A_2A_3 = ∠C_2A_3A_1 [22] & ∠A_3C_2A_1 = ∠A_2C_1A_3 [32] (Similar Triangles)⇒ A_3A_2:A_1A_3 = A_3C_1:A_1C_2 [33] 020. A_3A_2:A_1A_3 = A_3C_1:A_1C_2 [33] & C_1A_2 = C_1A_3 [09] & C_2A_3 = C_2A_1 [12] & B_2A_3 = A_3A_1 [06] ⇒ A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] 021. ∠(A_2C_1-A_3B_1) = ∠(C_2A_3-B_2A_1) [20] & ∠A_3B_1A_2 = ∠A_1B_2A_3 [28] ⇒ ∠(A_2C_1-A_3C_2) = ∠(A_2B_1-A_3B_2) [35] 022. ∠A_3A_2B_1 = ∠A_3C_1A_2 [23] & ∠(A_2C_1-A_3C_2) = ∠(A_2B_1-A_3B_2) [35] ⇒ ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] 023. A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] & ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] (Similar Triangles)⇒ ∠A_3A_2B_2 = ∠A_3C_1C_2 [37] 024. A_2A_3:B_2A_3 = C_1A_3:C_2A_3 [34] & ∠A_2A_3B_2 = ∠C_1A_3C_2 [36] (Similar Triangles)⇒ ∠A_2B_2A_3 = ∠C_1C_2A_3 [38] 025. ∠A_3A_2B_2 = ∠A_3C_1C_2 [37] & ∠A_2B_2A_3 = ∠C_1C_2A_3 [38] (Similar Triangles)⇒ A_2A_3:A_2B_2 = C_1A_3:C_1C_2 [39] 026. C_3A_1 = C_3A_2 [13] & C_3B_3 = C_3A_1 [14] ⇒ C_3B_3 = C_3A_2 [40] 027. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_2 [40] ⇒ A_2B_3 ⟂ A_1C_3 [41] 028. A_3B_1 ⟂ A_2C_1 [19] & A_2B_3 ⟂ A_1C_3 [41] ⇒ ∠(A_2C_1-A_1C_3) = ∠(A_3B_1-A_2B_3) [42] 029. A_3B_1 ⟂ A_2C_1 [19] & A_2B_3 ⟂ A_1C_3 [41] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] 030. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠B_1A_3A_2 = 1_PI/3 [04] ⇒ ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] 031. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠(A_2C_1-A_1C_3) = ∠A_3A_2A_1 [45] 032. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] 033. ∠(A_2C_1-A_1C_3) = ∠(A_3B_1-A_2B_3) [42] & ∠(A_2C_1-A_1C_3) = ∠A_3A_2A_1 [45] ⇒ ∠A_3A_2A_1 = ∠(A_3B_1-A_2B_3) [47] 034. ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] & ∠A_3A_2A_1 = ∠(A_3B_1-A_2B_3) [47] ⇒ ∠A_2B_1A_3 = ∠B_3A_2A_1 [48] 035. A_1B_3 = A_1A_2 [00] ⇒ ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] 036. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] (Angle chase)⇒ ∠A_2A_1B_3 = 1_PI/3 [50] 037. ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] & ∠A_1A_2B_3 = 2_PI/3 [02] & ∠A_2A_3B_1 = 2_PI/3 [05] & ∠A_2A_3B_1 = ∠A_3B_1A_2 [27] ⇒ ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] 038. ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] & ∠B_1A_3A_2 = ∠B_3A_2A_1 [44] ⇒ ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] 039. ∠A_2B_1A_3 = ∠B_3A_2A_1 [48] & ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_2A_1B_3 = 1_PI/3 [50] & ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] ⇒ ∠A_3A_2B_1 = ∠A_2B_1A_3 [53] 040. ∠A_3A_2B_1 = ∠A_2B_1A_3 [53] ⇒ A_3A_2 = A_3B_1 [54] 041. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_1 [14] & C_3A_1 = C_3A_2 [13] (SSS)⇒ ∠A_2A_1B_3 = ∠A_1C_3B_3 [55] 042. A_1B_3 = A_1A_2 [00] & C_3B_3 = C_3A_1 [14] & C_3A_1 = C_3A_2 [13] (SSS)⇒ ∠B_3A_1A_2 = ∠A_1C_3A_2 [56] 043. ∠A_3A_2B_1 = ∠A_2C_1B_1 [24] & ∠A_3A_2B_1 = ∠A_2A_1B_3 [52] & ∠A_2A_1B_3 = ∠A_1C_3B_3 [55] ⇒ ∠A_1C_3B_3 = ∠A_2C_1B_1 [57] 044. ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] & ∠A_1C_3B_3 = ∠A_2C_1B_1 [57] ⇒ ∠(B_3C_3-A_1A_2) = ∠(B_1C_1-A_2A_3) [58] 045. C_3B_3 = C_3A_1 [14] ⇒ ∠C_3B_3A_1 = ∠B_3A_1C_3 [59] 046. C_3B_3 = C_3A_2 [40] ⇒ ∠C_3B_3A_2 = ∠B_3A_2C_3 [60] 047. C_3A_1 = C_3A_2 [13] ⇒ ∠C_3A_1A_2 = ∠A_1A_2C_3 [61] 048. ∠B_3A_2A_1 = 1_PI/3 [01] & ∠A_1A_2B_3 = ∠A_2B_3A_1 [49] & ∠C_3B_3A_1 = ∠B_3A_1C_3 [59] & ∠C_3B_3A_2 = ∠B_3A_2C_3 [60] & ∠C_3A_1A_2 = ∠A_1A_2C_3 [61] (Angle chase)⇒ A_1A_2 ⟂ B_3C_3 [62] 049. ∠(B_3C_3-A_1A_2) = ∠(B_1C_1-A_2A_3) [58] & A_1A_2 ⟂ B_3C_3 [62] & A_3B_1 ⟂ A_2C_1 [19] ⇒ ∠(A_2C_1-A_3B_1) = ∠(C_1B_1-A_2A_3) [63] 050. ∠A_3A_2C_1 = ∠A_2B_1C_1 [25] & ∠(A_3B_2-A_2B_1) = ∠A_1A_3A_2 [30] ⇒ ∠(B_1C_1-A_3B_2) = ∠(A_2C_1-A_1A_3) [64] 051. ∠(A_2C_1-A_3B_1) = ∠(C_1B_1-A_2A_3) [63] & ∠(B_1C_1-A_3B_2) = ∠(A_2C_1-A_1A_3) [64] ⇒ ∠A_2A_3B_2 = ∠B_1A_3A_1 [65] 052. A_3A_2 = A_3B_1 [54] & A_3B_2 = A_3A_1 [06] & ∠A_2A_3B_2 = ∠B_1A_3A_1 [65] (SAS)⇒ B_2A_2 = A_1B_1 [66] 053. ∠B_1A_2A_3 = ∠A_2C_1A_3 [23] & ∠B_1A_2A_3 = ∠B_3A_1A_2 [52] & ∠B_3A_1A_2 = ∠A_1C_3A_2 [56] ⇒ ∠A_1C_3A_2 = ∠A_2C_1A_3 [67] 054. ∠C_1A_2A_3 = ∠C_3A_1A_2 [46] & ∠A_1C_3A_2 = ∠A_2C_1A_3 [67] (Similar Triangles)⇒ A_3A_2:A_2A_1 = A_3C_1:A_2C_3 [68] 055. A_3A_2:A_2A_1 = A_3C_1:A_2C_3 [68] & C_1A_2 = C_1A_3 [09] & C_3A_1 = C_3A_2 [13] & A_2B_1 = A_2A_3 [03] ⇒ A_2A_1:A_2B_1 = A_2C_3:A_2C_1 [69] 056. ∠(A_2C_1-A_3B_1) = ∠(C_3A_1-A_2B_3) [43] & ∠A_3B_1A_2 = ∠A_2B_3A_1 [51] ⇒ ∠(A_2C_1-A_1C_3) = ∠(A_2B_1-A_1B_3) [70] 057. ∠A_2A_1B_3 = ∠A_2C_3A_1 [56] & ∠(A_2C_1-A_1C_3) = ∠(A_2B_1-A_1B_3) [70] ⇒ ∠C_3A_2C_1 = ∠A_1A_2B_1 [71] 058. A_2A_1:A_2B_1 = A_2C_3:A_2C_1 [69] & ∠C_3A_2C_1 = ∠A_1A_2B_1 [71] (Similar Triangles)⇒ B_1A_1:B_1A_2 = C_1C_3:C_1A_2 [72] 059. A_2A_3:A_2B_2 = C_1A_3:C_1C_2 [39] & B_2A_2 = A_1B_1 [66] & C_1A_2 = C_1A_3 [09] & B_1A_1:B_1A_2 = C_1C_3:C_1A_2 [72] & A_2B_1 = A_2A_3 [03] ⇒ C_1A_3:C_1C_3 = C_1A_3:C_1C_2 [73] 060. C_1A_3:C_2A_3 = C_1A_3:C_2A_3 [15] & C_1A_3:C_1C_3 = C_1A_3:C_1C_2 [73] ⇒ C_1C_3 = C_1C_2 ========================== I0210 12:02:42.036046 140467004882944 alphageometry.py:195] Solution written to /home/tong_peng/pyvenv/agtest/ag.out.