I0210 22:07:57.112957 140473292709888 graph.py:498] angbisec_bline_cyclic I0210 22:07:57.113278 140473292709888 graph.py:499] a b c = triangle a b c; d = on_bline d b c, angle_bisector d b a c ? cyclic a b c d I0210 22:07:57.142698 140473292709888 alphageometry.py:221] DD+AR failed to solve the problem. I0210 22:07:57.142895 140473292709888 alphageometry.py:555] Depth 0. There are 1 nodes to expand: I0210 22:07:57.143001 140473292709888 alphageometry.py:559] {S} a : ; b : ; c : ; d : D b d c d 00 ^ a b a d a d a c 01 ^ c b c d b d b c 02 ? O a b c d {F1} x00 I0210 22:07:57.143262 140473292709888 alphageometry.py:564] Decoding from {S} a : ; b : ; c : ; d : D b d c d 00 ^ a b a d a d a c 01 ^ c b c d b d b c 02 ? O a b c d {F1} x00 I0210 22:10:02.080104 140473292709888 alphageometry.py:582] Translation: "ERROR: Traceback (most recent call last): File "/home/tong_peng/pyvenv/alphageometry/alphageometry.py", line 454, in try_translate_constrained_to_construct g.copy().add_clause(clause, 0, DEFINITIONS) File "/home/tong_peng/pyvenv/alphageometry/graph.py", line 2637, in add_clause raise PointTooFarError() graph.PointTooFarError " I0210 22:10:02.080281 140473292709888 alphageometry.py:582] Translation: "ERROR: Traceback (most recent call last): File "/home/tong_peng/pyvenv/alphageometry/alphageometry.py", line 454, in try_translate_constrained_to_construct g.copy().add_clause(clause, 0, DEFINITIONS) File "/home/tong_peng/pyvenv/alphageometry/graph.py", line 2622, in add_clause nums = draw_fn() File "/home/tong_peng/pyvenv/alphageometry/graph.py", line 2608, in draw_fn return nm.reduce(to_be_intersected, existing_points) File "/home/tong_peng/pyvenv/alphageometry/numericals.py", line 1310, in reduce result = a.intersect(b) File "/home/tong_peng/pyvenv/alphageometry/numericals.py", line 213, in intersect return line_line_intersection(self, obj) File "/home/tong_peng/pyvenv/alphageometry/numericals.py", line 584, in line_line_intersection raise InvalidLineIntersectError numericals.InvalidLineIntersectError " I0210 22:10:02.080370 140473292709888 alphageometry.py:582] Translation: "e = on_bline e b a, on_bline e c a" I0210 22:10:02.080573 140473292709888 graph.py:498] I0210 22:10:02.080641 140473292709888 graph.py:499] a b c = triangle a b c; d = on_bline d b c, angle_bisector d b a c; e = on_bline e b a, on_bline e c a ? cyclic a b c d I0210 22:10:02.356900 140473292709888 alphageometry.py:191] ========================== * From theorem premises: A B C D : Points ∠BAD = ∠DAC [00] DB = DC [01] * Auxiliary Constructions: E : Points EC = EA [02] EB = EA [03] ∠EBA = ∠BAE [04] ∠ECA = ∠CAE [05] * Proof steps: 001. EB = EA [03] & EC = EA [02] ⇒ EC = EB [06] 002. EC = EB [06] ⇒ ∠ECB = ∠CBE [07] 003. DB = DC [01] & EC = EB [06] ⇒ BC ⟂ DE [08] 004. ∠BAD = ∠DAC [00] & ∠EBA = ∠BAE [04] & ∠ECA = ∠CAE [05] & ∠ECB = ∠CBE [07] & BC ⟂ DE [08] (Angle chase)⇒ ∠DAE = ∠EDA [09] 005. ∠DAE = ∠EDA [09] ⇒ EA = ED [10] 006. EC = EA [02] & EB = EA [03] & EA = ED [10] ⇒ C,B,A,D are concyclic ========================== I0210 22:10:02.357384 140473292709888 alphageometry.py:195] Solution written to /home/tong_peng/pyvenv/agtest/ag.out2. I0210 22:11:16.577270 140473292709888 alphageometry.py:597] Solved.