I0211 17:53:45.675628 140166174494720 graph.py:498] castillon_lemma I0211 17:53:45.676038 140166174494720 graph.py:499] a b = segment a b; c = on_circle c a b; d = on_line d a b, lc_tangent d c a; e = foot e c a b; f = on_circle f a b; g = on_tline g d a b, lc_tangent g f a; h = on_line h d g, on_line h e f; i = on_circle i a b; j = on_circle j a b, on_line j i g; k = on_circle k a b, on_line k i h ? coll e j k I0211 17:56:14.703040 140166174494720 alphageometry.py:191] ========================== * From theorem premises: A B C D E F G H I J K : Points AC = AB [00] D,A,B are collinear [01] CD ⟂ AC [02] CE ⟂ AB [03] A,E,B are collinear [04] AF = AB [05] ∠BAF = ∠BAF [06] AB ⟂ GD [07] FG ⟂ AF [08] F,H,E are collinear [09] D,G,H are collinear [10] AI = AB [11] AJ = AB [12] G,J,I are collinear [13] AK = AB [14] H,K,I are collinear [15] * Auxiliary Constructions: : Points * Proof steps: 001. AB ⟂ GD [07] & CE ⟂ AB [03] ⇒ GD ∥ CE [16] 002. AI = AB [11] & AK = AB [14] & AC = AB [00] & AF = AB [05] & AJ = AB [12] ⇒ J,C,B,K are concyclic [17] 003. J,C,B,K are concyclic [17] ⇒ ∠JBC = ∠JKC [18] 004. J,C,B,K are concyclic [17] ⇒ ∠JCB = ∠JKB [19] 005. AC = AB [00] ⇒ ∠ACB = ∠CBA [20] 006. AK = AB [14] & AC = AB [00] ⇒ AC = AK [21] 007. AC = AK [21] ⇒ ∠ACK = ∠CKA [22] 008. AK = AB [14] ⇒ ∠ABK = ∠BKA [23] 009. CE ⟂ AB [03] & DG ∥ CE [16] & ∠JBC = ∠JKC [18] & ∠JCB = ∠JKB [19] & ∠ACB = ∠CBA [20] & ∠ACK = ∠CKA [22] & ∠ABK = ∠BKA [23] (Angle chase)⇒ ∠(DG-BJ) = ∠BCJ [24] 010. ∠(DG-BJ) = ∠BCJ [24] & DG ∥ CE [16] & ∠BCJ = ∠BKJ [19] ⇒ ∠BKJ = ∠(DG-JB) [25] 011. AI = AB [11] & AF = AB [05] & AJ = AB [12] ⇒ A is the circumcenter of \Delta FIJ [26] 012. A is the circumcenter of \Delta FIJ [26] & FG ⟂ AF [08] ⇒ ∠GFI = ∠FJI [27] 013. G,J,I are collinear [13] & ∠GFI = ∠FJI [27] ⇒ ∠FJG = ∠GFI [28] 014. G,J,I are collinear [13] ⇒ ∠FGJ = ∠FGI [29] 015. ∠FJG = ∠GFI [28] & ∠FGJ = ∠FGI [29] (Similar Triangles)⇒ FJ:FG = FI:GI [30] 016. ∠FJG = ∠GFI [28] & ∠FGJ = ∠FGI [29] (Similar Triangles)⇒ FJ:GJ = FI:FG [31] 017. D,A,B are collinear [01] & FG ⟂ AF [08] & CE ⟂ AB [03] & CE ∥ DG [16] ⇒ ∠GDA = ∠GFA [32] 018. ∠GDA = ∠GFA [32] ⇒ D,F,A,G are concyclic [33] 019. D,F,A,G are concyclic [33] ⇒ ∠FDG = ∠FAG [34] 020. D,F,A,G are concyclic [33] ⇒ ∠DFG = ∠DAG [35] 021. A,E,B are collinear [04] & CE ⟂ AB [03] & CD ⟂ AC [02] ⇒ ∠ACD = ∠CEA [36] 022. D,A,B are collinear [01] & AB ⟂ DG [07] ⇒ DA ⟂ DG [37] 023. DA ⟂ DG [37] & CD ⟂ AC [02] ⇒ ∠ADC = ∠(DG-CA) [38] 024. DA ⟂ DG [37] & CD ⟂ AC [02] ⇒ ∠DAC = ∠GDC [39] 025. D,A,B are collinear [01] & ∠ADC = ∠(DG-CA) [38] & DG ∥ CE [16] ⇒ ∠ADC = ∠ECA [40] 026. ∠ACD = ∠CEA [36] & ∠ADC = ∠ECA [40] (Similar Triangles)⇒ AC:AD = AE:AC [41] 027. AC:AD = AE:AC [41] & AC = AB [00] & FA = AB [05] ⇒ AE:AF = AF:AD [42] 028. A,E,B are collinear [04] & D,A,B are collinear [01] & ∠BAF = ∠BAF [06] ⇒ ∠EAF = ∠DAF [43] 029. AE:AF = AF:AD [42] & ∠EAF = ∠DAF [43] (Similar Triangles)⇒ ∠AEF = ∠DFA [44] 030. F,H,E are collinear [09] & ∠DFG = ∠DAG [35] & D,A,B are collinear [01] & ∠AEF = ∠DFA [44] & A,E,B are collinear [04] ⇒ ∠AFH = ∠FGA [45] 031. FG ⟂ AF [08] & ∠AFH = ∠FGA [45] ⇒ ∠GFH = ∠FAG [46] 032. F,H,E are collinear [09] & ∠FDG = ∠FAG [34] & DG ∥ CE [16] & ∠GFH = ∠FAG [46] ⇒ ∠HFG = ∠GDF [47] 033. D,G,H are collinear [10] & CE ∥ DG [16] ⇒ ∠FGD = ∠FGH [48] 034. ∠HFG = ∠GDF [47] & ∠FGD = ∠FGH [48] (Similar Triangles)⇒ DF:FG = FH:GH [49] 035. ∠HFG = ∠GDF [47] & ∠FGD = ∠FGH [48] (Similar Triangles)⇒ DF:DG = FH:FG [50] 036. FJ:FG = FI:GI [30] & FJ:GJ = FI:FG [31] & DF:FG = FH:GH [49] & DF:DG = FH:FG [50] (Ratio chase)⇒ GI:GH = DG:GJ [51] 037. G,J,I are collinear [13] & D,G,H are collinear [10] ⇒ ∠DGJ = ∠HGI [52] 038. GI:GH = DG:GJ [51] & ∠DGJ = ∠HGI [52] (Similar Triangles)⇒ ∠GDJ = ∠HIG [53] 039. AI = AB [11] & AK = AB [14] & AC = AB [00] & AF = AB [05] & AJ = AB [12] ⇒ J,B,K,I are concyclic [54] 040. J,B,K,I are concyclic [54] ⇒ ∠JBK = ∠JIK [55] 041. ∠GDJ = ∠HIG [53] & DG ∥ CE [16] & ∠JBK = ∠JIK [55] & G,J,I are collinear [13] & H,K,I are collinear [15] ⇒ ∠KBJ = ∠GDJ [56] 042. ∠BKJ = ∠(DG-JB) [25] & ∠KBJ = ∠GDJ [56] ⇒ ∠KJB = ∠BJD [57] 043. A,E,B are collinear [04] & D,A,B are collinear [01] ⇒ B,D,E are collinear [58] 044. A,E,B are collinear [04] & D,A,B are collinear [01] & CE ⟂ AB [03] ⇒ ∠DEC = ∠CEA [59] 045. A,E,B are collinear [04] & ∠DAC = ∠GDC [39] & D,A,B are collinear [01] & DG ∥ CE [16] ⇒ ∠DCE = ∠CAE [60] 046. ∠DEC = ∠CEA [59] & ∠DCE = ∠CAE [60] (Similar Triangles)⇒ CD:AC = CE:AE [61] 047. AC:AD = AE:AC [41] & AC = AB [00] & JA = AB [12] ⇒ AE:AJ = AJ:AD [62] 048. A,E,B are collinear [04] & D,A,B are collinear [01] ⇒ ∠EAJ = ∠DAJ [63] 049. AE:AJ = AJ:AD [62] & ∠EAJ = ∠DAJ [63] (Similar Triangles)⇒ EA:EJ = JA:JD [64] 050. EA:EJ = JA:JD [64] & AJ = AB [12] & CA = AB [00] ⇒ CA:DJ = AE:JE [65] 051. CA:DC = AE:CE [61] & CA:DJ = AE:JE [65] ⇒ DC:CE = DJ:JE [66] 052. CD ⟂ AC [02] & CE ⟂ AB [03] & ∠ACB = ∠CBA [20] (Angle chase)⇒ ∠DCB = ∠BCE [67] 053. ∠DCB = ∠BCE [67] & B,D,E are collinear [58] ⇒ DB:EB = DC:CE [68] 054. DC:CE = DJ:JE [66] & DB:EB = DC:CE [68] ⇒ BD:BE = JD:JE [69] 055. BD:BE = JD:JE [69] & B,D,E are collinear [58] ⇒ ∠BJD = ∠EJB [70] 056. ∠KJB = ∠BJD [57] & ∠BJD = ∠EJB [70] ⇒ ∠EJB = ∠KJB [71] 057. ∠EJB = ∠KJB [71] ⇒ JE ∥ JK [72] 058. EJ ∥ JK [72] ⇒ J,K,E are collinear ========================== I0211 17:56:14.704421 140166174494720 alphageometry.py:195] Solution written to /home/tong_peng/pyvenv/agtest/ag.out.