I0218 15:36:12.138049 140279694163968 graph.py:498] ceva_menelaus_hint I0218 15:36:12.139024 140279694163968 graph.py:499] a b c = triangle; d = free; e = on_line b c, on_line a d; f = on_line c a, on_line b d; g = on_line a b, on_line c d; h = on_line c a, on_pline h b e f; i = on_line c d, on_pline i e a b; j = on_line b f, on_pline j e a c ? eqratio f h f a g b g a I0218 15:36:15.467568 140279694163968 alphageometry.py:191] ========================== * From theorem premises: A B C D E F G H : Points B,E,C are collinear [00] A,D,E are collinear [01] A,F,C are collinear [02] B,D,F are collinear [03] A,B,G are collinear [04] G,D,C are collinear [05] HB ∥ EF [06] A,H,C are collinear [07] * Auxiliary Constructions: I J : Points IE ∥ AB [08] D,I,C are collinear [09] JE ∥ AC [10] B,J,F are collinear [11] * Proof steps: 001. A,B,G are collinear [04] & EI ∥ AB [08] ⇒ BG ∥ EI [12] 002. D,I,C are collinear [09] & G,D,C are collinear [05] ⇒ C,G,I are collinear [13] 003. D,I,C are collinear [09] & G,D,C are collinear [05] ⇒ D,G,I are collinear [14] 004. BG ∥ EI [12] & B,E,C are collinear [00] & C,G,I are collinear [13] ⇒ BC:EC = BG:IE [15] 005. A,H,C are collinear [07] & A,F,C are collinear [02] ⇒ C,H,F are collinear [16] 006. BH ∥ EF [06] & B,E,C are collinear [00] & C,H,F are collinear [16] ⇒ BC:EC = BH:EF [17] 007. A,H,C are collinear [07] & A,F,C are collinear [02] & BH ∥ EF [06] & AC ∥ EJ [10] ⇒ ∠BHF = ∠FEJ [18] 008. B,D,F are collinear [03] & A,H,C are collinear [07] & A,F,C are collinear [02] & B,J,F are collinear [11] & AC ∥ EJ [10] ⇒ ∠BFH = ∠FJE [19] 009. ∠BHF = ∠FEJ [18] & ∠BFH = ∠FJE [19] (Similar Triangles)⇒ BH:EF = HF:JE [20] 010. BC:EC = BG:IE [15] & BC:EC = BH:EF [17] & BH:EF = HF:JE [20] ⇒ HF:JE = BG:IE [21] 011. A,G,B are collinear [04] & EI ∥ AB [08] ⇒ AG ∥ EI [22] 012. AG ∥ EI [22] & A,D,E are collinear [01] & D,G,I are collinear [14] ⇒ DE:AD = IE:AG [23] 013. A,C,F are collinear [02] & EJ ∥ AC [10] ⇒ JE ∥ FA [24] 014. B,J,F are collinear [11] & B,D,F are collinear [03] ⇒ D,J,F are collinear [25] 015. JE ∥ FA [24] & A,D,E are collinear [01] & D,J,F are collinear [25] ⇒ DE:AD = JE:AF [26] 016. DE:AD = IE:AG [23] & DE:AD = JE:AF [26] ⇒ JE:AF = IE:AG [27] 017. HF:JE = BG:IE [21] & JE:AF = IE:AG [27] ⇒ HF:AF = BG:AG ========================== I0218 15:36:15.468291 140279694163968 alphageometry.py:195] Solution written to /home/tong_peng/onedrive_googie32u/agtest/ag.out4.