++ BATCH_SIZE=32 ++ BEAM_SIZE=128 ++ DEPTH=8 ++ NWORKERS=8 ++ PROB_FILE=/home/tong_peng/onedrive_googie32u/agtest/myexamples.txt ++ PROB=gaolian100-6-lemma ++ MODEL=alphageometry ++ DATA=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab ++ MELIAD_PATH=/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ export PYTHONPATH=:/home/tong_peng/onedrive_googie32u/alphageometry:/home/tong_peng/pyvenv/ag:/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ PYTHONPATH=:/home/tong_peng/onedrive_googie32u/alphageometry:/home/tong_peng/pyvenv/ag:/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ DDAR_ARGS=(--defs_file=$AGDIR/defs.txt --rules_file=$AGDIR/rules.txt) ++ SEARCH_ARGS=(--beam_size=$BEAM_SIZE --search_depth=$DEPTH) ++ LM_ARGS=(--ckpt_path=$DATA --vocab_path=$DATA/geometry.757.model --gin_search_paths=$MELIAD_PATH/transformer/configs,$AGDIR --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=$BATCH_SIZE --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False) ++ true ========================================== ++ python -m alphageometry --alsologtostderr --problems_file=/home/tong_peng/onedrive_googie32u/agtest/myexamples.txt --problem_name=gaolian100-6-lemma --mode=alphageometry --defs_file=/home/tong_peng/onedrive_googie32u/alphageometry/defs.txt --rules_file=/home/tong_peng/onedrive_googie32u/alphageometry/rules.txt --beam_size=128 --search_depth=8 --ckpt_path=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab --vocab_path=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab/geometry.757.model --gin_search_paths=/home/tong_peng/pyvenv/ag/meliad_lib/meliad/transformer/configs,/home/tong_peng/onedrive_googie32u/alphageometry --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=32 --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False --out_file=/home/tong_peng/onedrive_googie32u/agtest/ag.out --n_workers=8 I0321 22:27:00.674356 136990061826048 graph.py:498] gaolian100-6-lemma I0321 22:27:00.674595 136990061826048 graph.py:499] a = free a; b = free b; c = on_circle c a b; d = on_circle d a b; e = lc_tangent e c a, lc_tangent e d a; f = midpoint f c d; g = on_line g e b, on_circle g a b ? eqangle f d f g f b f d I0321 22:27:06.853825 136990061826048 alphageometry.py:200] ========================== * From theorem premises: A B C D E F G : Points AC = AB [00] AD = AB [01] CE ⟂ AC [02] DE ⟂ AD [03] D,F,C are collinear [04] FC = FD [05] G,B,E are collinear [06] AG = AB [07] * Auxiliary Constructions: : Points * Proof steps: 001. AG = AB [07] & AC = AB [00] ⇒ A is the circumcenter of \Delta CGB [08] 002. A is the circumcenter of \Delta CGB [08] & CE ⟂ AC [02] ⇒ ∠ECG = ∠CBG [09] 003. B,G,E are collinear [06] & ∠ECG = ∠CBG [09] ⇒ ∠BCE = ∠EGC [10] 004. B,G,E are collinear [06] ⇒ ∠BEC = ∠GEC [11] 005. ∠BCE = ∠EGC [10] & ∠BEC = ∠GEC [11] (Similar Triangles)⇒ BC:BE = CG:CE [12] 006. ∠BCE = ∠EGC [10] & ∠BEC = ∠GEC [11] (Similar Triangles)⇒ CB:CE = GC:GE [13] 007. AG = AB [07] & AD = AB [01] & AC = AB [00] ⇒ A is the circumcenter of \Delta DGC [14] 008. A is the circumcenter of \Delta DGC [14] & DE ⟂ AD [03] ⇒ ∠CDE = ∠CGD [15] 009. A is the circumcenter of \Delta DGC [14] & CE ⟂ AC [02] ⇒ ∠ECD = ∠CGD [16] 010. ∠CDE = ∠CGD [15] & ∠ECD = ∠CGD [16] ⇒ ∠ECD = ∠CDE [17] 011. ∠ECD = ∠CDE [17] ⇒ EC = ED [18] 012. BC:BE = CG:CE [12] & EC = ED [18] ⇒ BC:BE = GC:ED [19] 013. AC = AB [00] & AD = AB [01] ⇒ AD = AC [20] 014. AD = AC [20] & FC = FD [05] ⇒ CD ⟂ AF [21] 015. C,F,D are collinear [04] & CD ⟂ AF [21] & CE ⟂ AC [02] ⇒ ∠ACE = ∠AFD [22] 016. D,F,C are collinear [04] & FC = FD [05] ⇒ F is midpoint of DC [23] 017. A is the circumcenter of \Delta DGC [14] & F is midpoint of DC [23] ⇒ ∠CGD = ∠FAD [24] 018. DE ⟂ AD [03] & CE ⟂ AC [02] ⇒ ∠ECA = ∠EDA [25] 019. ∠ECA = ∠EDA [25] ⇒ A,D,E,C are concyclic [26] 020. A,D,E,C are concyclic [26] ⇒ ∠CAE = ∠CDE [27] 021. ∠CGD = ∠FAD [24] & ∠CDE = ∠CGD [15] & ∠CAE = ∠CDE [27] ⇒ ∠CAE = ∠FAD [28] 022. ∠ACE = ∠AFD [22] & ∠CAE = ∠FAD [28] (Similar Triangles)⇒ EC:DF = EA:DA [29] 023. ∠ACE = ∠AFD [22] & ∠CAE = ∠FAD [28] (Similar Triangles)⇒ AE:AC = AD:AF [30] 024. AE:AC = AD:AF [30] & AC = AB [00] & AD = AB [01] ⇒ AE:AB = AB:AF [31] 025. AD = AC [20] & EC = ED [18] ⇒ DC ⟂ AE [32] 026. DC ⟂ AE [32] & CD ⟂ AF [21] ⇒ ∠EAB = ∠FAB [33] 027. DC ⟂ AE [32] & CD ⟂ AF [21] ⇒ ∠GAF = ∠GAE [34] 028. AE:AB = AB:AF [31] & ∠EAB = ∠FAB [33] (Similar Triangles)⇒ AE:AB = BE:FB [35] 029. EC:DF = EA:DA [29] & EC = ED [18] & AD = AB [01] & AE:AB = BE:FB [35] & FC = FD [05] ⇒ BE:FB = ED:FC [36] 030. BC:BE = GC:ED [19] & BE:FB = ED:FC [36] ⇒ BC:FB = GC:FC [37] 031. BC:BE = GC:ED [19] & BE:FB = ED:FC [36] ⇒ BC:GC = FB:FC [38] 032. CB:CE = GC:GE [13] & EC = ED [18] ⇒ BC:ED = GC:GE [39] 033. AB:AF = AE:AB [31] & AG = AB [07] ⇒ AG:AF = AE:AG [40] 034. AG:AF = AE:AG [40] & ∠GAF = ∠GAE [34] (Similar Triangles)⇒ GA:EA = GF:EG [41] 035. EC:DF = EA:DA [29] & EC = ED [18] & AD = AB [01] & GA:EA = GF:EG [41] & AG = AB [07] & FC = FD [05] ⇒ GE:FG = ED:FC [42] 036. BC:ED = GC:GE [39] & GE:FG = ED:FC [42] ⇒ GC:BC = FG:FC [43] 037. GC:BC = FG:FC [43] & FC = FD [05] & BC:GC = FB:FC [38] ⇒ FC:FB = FG:FC [44] 038. BC:FB = GC:FC [37] & FC:FB = FG:FC [44] (Similar Triangles)⇒ ∠GFC = ∠CFB [45] 039. C,F,D are collinear [04] & ∠GFC = ∠CFB [45] ⇒ ∠DFG = ∠BFD ========================== I0321 22:27:06.854308 136990061826048 alphageometry.py:204] Solution written to /home/tong_peng/onedrive_googie32u/agtest/ag.out.