++ BATCH_SIZE=8 ++ BEAM_SIZE=60 ++ DEPTH=16 ++ NWORKERS=12 ++ PROB_FILE=/home/tong_peng/onedrive_googie32u/agtest/myexamples.txt ++ PROB=square_angle15_hint ++ MODEL=ddar ++ DATA=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab ++ MELIAD_PATH=/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ export PYTHONPATH=:/home/tong_peng/onedrive_googie32u/alphageometry:/home/tong_peng/pyvenv/ag:/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ PYTHONPATH=:/home/tong_peng/onedrive_googie32u/alphageometry:/home/tong_peng/pyvenv/ag:/home/tong_peng/pyvenv/ag/meliad_lib/meliad ++ DDAR_ARGS=(--defs_file=$AGDIR/defs.txt --rules_file=$AGDIR/rules.txt) ++ SEARCH_ARGS=(--beam_size=$BEAM_SIZE --search_depth=$DEPTH) ++ LM_ARGS=(--ckpt_path=$DATA --vocab_path=$DATA/geometry.757.model --gin_search_paths=$MELIAD_PATH/transformer/configs,$AGDIR --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=$BATCH_SIZE --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False) ++ true ========================================== ++ python -m alphageometry --alsologtostderr --problems_file=/home/tong_peng/onedrive_googie32u/agtest/myexamples.txt --problem_name=square_angle15_hint --mode=ddar --defs_file=/home/tong_peng/onedrive_googie32u/alphageometry/defs.txt --rules_file=/home/tong_peng/onedrive_googie32u/alphageometry/rules.txt --beam_size=60 --search_depth=16 --ckpt_path=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab --vocab_path=/home/tong_peng/pyvenv/ag/ag_ckpt_vocab/geometry.757.model --gin_search_paths=/home/tong_peng/pyvenv/ag/meliad_lib/meliad/transformer/configs,/home/tong_peng/onedrive_googie32u/alphageometry --gin_file=base_htrans.gin --gin_file=size/medium_150M.gin --gin_file=options/positions_t5.gin --gin_file=options/lr_cosine_decay.gin --gin_file=options/seq_1024_nocache.gin --gin_file=geometry_150M_generate.gin --gin_param=DecoderOnlyLanguageModelGenerate.output_token_losses=True --gin_param=TransformerTaskConfig.batch_size=8 --gin_param=TransformerTaskConfig.sequence_length=128 --gin_param=Trainer.restore_state_variables=False --out_file=/home/tong_peng/onedrive_googie32u/agtest/ag.out2 --n_workers=12 I0309 23:40:56.050346 139793490157568 graph.py:498] square_angle15_hint I0309 23:40:56.050746 139793490157568 graph.py:499] a b c d = isquare a b c d; e = s_angle c d e 15, s_angle d c e -15; f = reflect f e a c ? cong e a a b I0309 23:41:21.521977 139793490157568 alphageometry.py:200] ========================== * From theorem premises: A B C D E : Points AB ⟂ BC [00] AB = BC [01] AB ∥ CD [02] AD ∥ BC [03] ∠EDC = 1_PI/12 [04] ∠ECD = 1_1PI/12 [05] * Auxiliary Constructions: F : Points CE = CF [06] AE = AF [07] * Proof steps: 001. AB ∥ CD [02] & BC ∥ AD [03] ⇒ ∠ABC = ∠CDA [08] 002. BC ∥ AD [03] ⇒ ∠ACB = ∠CAD [09] 003. ∠ABC = ∠CDA [08] & ∠ACB = ∠CAD [09] (Similar Triangles)⇒ AB = CD [10] 004. ∠ABC = ∠CDA [08] & ∠ACB = ∠CAD [09] (Similar Triangles)⇒ CB = AD [11] 005. ∠ABC = ∠CDA [08] & ∠ACB = ∠CAD [09] (Similar Triangles)⇒ BA:BC = DC:DA [12] 006. CE = CF [06] ⇒ ∠CFE = ∠FEC [13] 007. ∠EDC = 1_PI/12 [04] & AB ∥ CD [02] ⇒ ∠(DE-AB) = 1_PI/12 [14] 008. ∠ECD = 1_1PI/12 [05] & AB ∥ CD [02] ⇒ ∠(CE-AB) = 1_1PI/12 [15] 009. ∠EDC = 1_PI/12 [04] & AB ∥ CD [02] & ∠(CE-AB) = 1_1PI/12 [15] ⇒ ∠(CE-AB) = ∠(AB-DE) [16] 010. ∠(CE-AB) = ∠(AB-DE) [16] & AB ∥ CD [02] ⇒ ∠ECD = ∠CDE [17] 011. ∠ECD = ∠CDE [17] ⇒ EC = ED [18] 012. AB ⟂ BC [00] & ∠(DE-AB) = 1_PI/12 [14] (Angle chase)⇒ ∠(BC-DE) = 5_PI/12 [19] 013. AB ⟂ BC [00] & ∠(CE-AB) = 1_1PI/12 [15] (Angle chase)⇒ ∠ECB = 5_PI/12 [20] 014. ∠(BC-DE) = 5_PI/12 [19] & ∠ECB = 5_PI/12 [20] & BC ∥ AD [03] ⇒ ∠ECB = ∠ADE [21] 015. EC = ED [18] & CB = AD [11] & ∠ECB = ∠ADE [21] (SAS)⇒ BE = AE [22] 016. AB ⟂ BC [00] & BC ∥ AD [03] & AB ∥ CD [02] ⇒ ∠ABC = ∠ADC [23] 017. ∠ABC = ∠ADC [23] ⇒ B,C,A,D are concyclic [24] 018. AB ∥ CD [02] ⇒ ∠BCD = ∠CBA [25] 019. B,C,A,D are concyclic [24] & ∠BCD = ∠CBA [25] ⇒ BD = CA [26] 020. BE = AE [22] & EC = ED [18] & BD = CA [26] (SSS)⇒ ∠(BD-CE) = ∠(DE-AC) [27] 021. BA:BC = DC:DA [12] & AB = BC [01] ⇒ DC = DA [28] 022. DC = DA [28] & AB = BC [01] ⇒ AC ⟂ DB [29] 023. AE = AF [07] & CE = CF [06] ⇒ EF ⟂ AC [30] 024. ∠(BD-CE) = ∠(DE-AC) [27] & AC ⟂ DB [29] & EF ⟂ AC [30] ⇒ ∠FEC = ∠(DE-AC) [31] 025. AB = BC [01] ⇒ ∠BAC = ∠ACB [32] 026. AB ⟂ BC [00] & ∠(DE-AB) = 1_PI/12 [14] & ∠BAC = ∠ACB [32] (Angle chase)⇒ ∠(DE-AC) = 1_PI/3 [33] 027. AB ⟂ BC [00] & ∠(CE-AB) = 1_1PI/12 [15] & ∠BAC = ∠ACB [32] & ∠CFE = ∠FEC [13] & EF ⟂ AC [30] (Angle chase)⇒ ∠ECF = 1_PI/3 [34] 028. ∠CFE = ∠FEC [13] & ∠FEC = ∠(DE-AC) [31] & ∠(DE-AC) = 1_PI/3 [33] & ∠ECF = 1_PI/3 [34] ⇒ ∠ECF = ∠CFE [35] 029. ∠ECF = ∠CFE [35] ⇒ EC = EF [36] 030. AB = BC [01] & AB = CD [10] ⇒ CD = CB [37] 031. AE = AF [07] & BE = AE [22] ⇒ BE = AF [38] 032. CE = CF [06] & EC = ED [18] ⇒ ED = FC [39] 033. BE = AF [38] & ED = FC [39] & BD = CA [26] (SSS)⇒ ∠(BD-AC) = ∠(DE-CF) [40] 034. AB ⟂ BC [00] & BC ∥ AD [03] ⇒ AD ⟂ BA [41] 035. AD ⟂ BA [41] & EF ⟂ AC [30] ⇒ ∠DAB = ∠(AC-EF) [42] 036. AD ⟂ BA [41] & EF ⟂ AC [30] ⇒ ∠DAB = ∠(EF-AC) [43] 037. ∠(BD-AC) = ∠(DE-CF) [40] & AC ⟂ DB [29] & EF ⟂ AC [30] & ∠DAB = ∠(AC-EF) [42] & AD ∥ BC [03] ⇒ ∠DAB = ∠(FC-ED) [44] 038. ∠DAB = ∠(FC-ED) [44] & ∠(CE-AB) = ∠(AB-DE) [16] ⇒ ∠(AD-CF) = ∠(CE-AB) [45] 039. ∠(AD-CF) = ∠(CE-AB) [45] & AD ∥ BC [03] & AB ∥ CD [02] ⇒ ∠FCB = ∠DCE [46] 040. CE = CF [06] & CD = CB [37] & ∠FCB = ∠DCE [46] (SAS)⇒ BF = DE [47] 041. ∠(DE-AB) = 1_PI/12 [14] & ∠(CE-AB) = 1_1PI/12 [15] (Angle chase)⇒ ∠DEC = 1_PI/6 [48] 042. AB ⟂ BC [00] & ∠(DE-AB) = 1_PI/12 [14] & ∠BAC = ∠ACB [32] & EF ⟂ AC [30] (Angle chase)⇒ ∠FED = 1_PI/6 [49] 043. ∠(BD-AC) = ∠(DE-CF) [40] & AC ⟂ DB [29] & EF ⟂ AC [30] ⇒ FC ⟂ ED [50] 044. AD ⟂ BA [41] & FC ⟂ ED [50] ⇒ ∠(AD-CF) = ∠(AB-DE) [51] 045. ∠(AD-CF) = ∠(AB-DE) [51] & AD ∥ BC [03] & AB ∥ CD [02] ⇒ ∠FCB = ∠EDC [52] 046. ED = FC [39] & CD = CB [37] & ∠FCB = ∠EDC [52] (SAS)⇒ ∠(BF-CE) = ∠BCD [53] 047. ∠DAB = ∠(EF-AC) [43] & AD ∥ BC [03] & ∠(BF-CE) = ∠BCD [53] & AB ∥ CD [02] ⇒ ∠(BF-EC) = ∠(FE-CA) [54] 048. ∠(BF-EC) = ∠(FE-CA) [54] & ∠FEC = ∠(DE-AC) [31] ⇒ ∠BFE = ∠FED [55] 049. ∠DEC = 1_PI/6 [48] & ∠FED = 1_PI/6 [49] & AC ⟂ DB [29] & EF ⟂ AC [30] & ∠BFE = ∠FED [55] ⇒ ∠BFE = ∠DEC [56] 050. EC = EF [36] & BF = DE [47] & ∠BFE = ∠DEC [56] (SAS)⇒ DC = BE [57] 051. AB = CD [10] & DC = BE [57] & BE = AE [22] ⇒ EA = AB ========================== I0309 23:41:21.524046 139793490157568 alphageometry.py:204] Solution written to /home/tong_peng/onedrive_googie32u/agtest/ag.out2.