from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, TextStreamer import gradio as gr """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("EITD/lora_model", token=os.getenv("HF_TOKEN")) model = AutoPeftModelForCausalLM.from_pretrained( "EITD/lora_model_1", # YOUR MODEL YOU USED FOR TRAINING load_in_4bit = False, ) tokenizer = AutoTokenizer.from_pretrained("EITD/lora_model_1") # messages = [{"role": "user", "content": "Continue the Fibonacci sequence: 1, 1, 2, 3, 5, 8,"},] # inputs = tokenizer.apply_chat_template( # messages, # tokenize = True, # add_generation_prompt = True, # Must add for generation # return_tensors = "pt", # ) # outputs = model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True, # temperature = 1.5, min_p = 0.1) # print(tokenizer.batch_decode(outputs)) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response inputs = tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ) outputs = model.generate(input_ids = inputs, max_new_tokens = max_tokens, use_cache = True, temperature = temperature, min_p = top_p) # text_streamer = TextStreamer(tokenizer, skip_prompt = True) # model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = max_tokens, # use_cache = True, temperature = temperature, min_p = top_p) yield tokenizer.batch_decode(outputs, skip_special_tokens = True) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()