import cv2 from PIL import Image, ImageEnhance import gradio as gr from sklearn.cluster import KMeans import numpy as np with gr.Blocks() as interface: with gr.Row(): n_colors = gr.Slider(2, 32, 12, step=1, label="图片要加工的目标颜色数量") with gr.Row(): img_input = gr.Image() img_output = gr.Image() section_btn1 = gr.Button("合并色彩") # 图片模型训练 def img_fit_predict(img,n_colors): data = img.reshape(-1,3) # 把原始图片压缩成n_colors个颜色 kmeans = KMeans(n_clusters=n_colors) y_ = kmeans.fit_predict(data) # 模型合并颜色 colors = kmeans.cluster_centers_/255 output_temp = colors[y_].reshape(img.shape) return output_temp section_btn1.click(img_fit_predict, inputs=[img_input,n_colors], outputs=img_output) with gr.Row(): gaussian_blur = gr.Slider(1, 13, 13, step=2, label="整体降噪参数调整") structuring_element = gr.Slider(1, 13, 3, step=2, label="去除小噪声") canny_start = gr.Slider(1, 200, 4, step=1, label="边缘检测-开始参数") canny_end = gr.Slider(1, 200, 10, step=1, label="边缘检测-结束参数") with gr.Row(): thresh_val = gr.Slider(50, 500, 205, step=1, label="二值图像-thresh") maxval = gr.Slider(50, 500, 330, step=1, label="二值图像-maxval") enhance = gr.Slider(0, 1, 0.8, step=0.1, label="增强颜色-enhance") blend = gr.Slider(0, 1, 0.4, step=0.1, label="增强颜色-blend") section_btn2 = gr.Button("调整图片") with gr.Row(): closed_output = gr.Image() img_param_output = gr.Image() # 调整模型结果参数 def turn_arguments(img,img_output,gaussian_blur,structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend): gray = cv2.cvtColor(img_output, cv2.COLOR_BGR2GRAY) # 对灰度图像进行高斯滤波,以去除噪声 gray = cv2.GaussianBlur(gray, (gaussian_blur,gaussian_blur), 0) # 使用Canny算子进行边缘检测 edges = cv2.Canny(gray, canny_start, canny_end) # 将边缘图像转换为二值图像 _, thresh = cv2.threshold(edges, thresh_val, maxval, cv2.THRESH_BINARY) # 对二值图像进行形态学操作,以去除小的噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (structuring_element, structuring_element)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) image = Image.fromarray(img_output) closed = closed.astype(img.dtype) result = cv2.bitwise_and(img_output, img_output, mask=closed) result[closed==0] = (255,255,255) # 颜色空间转换 enhancer = ImageEnhance.Color(image=image) # 增强颜色 img1 = enhancer.enhance(enhance).convert('RGB') img2 = Image.fromarray(result).convert('RGB') union_img = np.asarray(Image.blend(img2, img1, blend)) return result,union_img section_btn2.click(turn_arguments,inputs=[img_input, img_output,gaussian_blur, structuring_element,canny_start,canny_end,thresh_val,maxval,enhance,blend ], outputs = [closed_output,img_param_output]) interface.launch()