library(shiny) library(shinyalert) library(shinythemes) library(shinydisconnect) library(shinycssloaders) library(shinyWidgets) library(spotifyr) library(SpotifyNetwork) library(spsComps) library(searcher) library(reactable) library(visNetwork) library(plotly) library(bslib) library(dplyr) library(igraph) # set global options options( shiny.browser = T, spinner.color = "#16F529", spinner.color.background = "#FFFFFF", spinner.size = 2 ) # create theme my_theme <- bs_theme( bg = "#fdfefe", fg = "black", primary = "red", base_font = font_google("Michroma"), "font-size-base" = "0.75rem", version = 5, "navbar-bg" = "#16F529" ) # define UI for application that gets Spotify network data ui <- navbarPage( title = strong("Spotify Data Importer"), id = "navbar", # useShinyalert(), windowTitle = "Spotify Data Importer", footer = h5(strong(tagList(h5(span("Spotify Data Importer for",style="color:green"), a("NodeXL", href = "https://www.nodexl.com/"))))), theme = my_theme, collapsible = T, setBackgroundImage(src = "musical.jpg"), # add marquee visual element tags$html(HTML("Spotify Data Importer For NodeXL"), ), # Add social media icons to navbar tags$style(".navbar-nav.socialmedia { display: flex; justify-content: right; flex-direction:row; padding: 5px; font-size: 20px; }"), tags$div(class = "navbar-nav socialmedia", tags$a(href = "https://www.github.com/Ifeanyi55", target = "_blank", icon("github", lib = "font-awesome"))), tabPanel( id = "tabOne", value = "oneTab", title = strong("Home"), icon = icon("home"), sidebarLayout( sidebarPanel( id = "side", width = 3, h4(strong("Credentials")), hr(), textInput("client_id", strong("Enter Client ID")), textInput("client_secret", strong("Enter Client SECRET")), br(), actionButton("validate", strong("Authenticate"), icon = icon("caret-right")), br(),hr(), textOutput("valout") ), mainPanel( id = "main", width = 8, span(style = "color:blue;",h5(strong(p(id = "dateclock")))),br(), h2(strong("Welcome to the NodeXL Spotify Data Importer!")), p(h5(strong("Before you begin scraping data, you will need to complete the steps below:"))), hr(), p(h5(strong(tagList("STEP 1: Go to", a("https://developer.spotify.com/dashboard/", href = "https://developer.spotify.com/dashboard/"), "and login with your credentials")))), br(), p(h5(strong("STEP 2: Create an app, and give it a name and a description"))), br(), p(h5(strong("STEP 3: Get the generated client ID and client Secret, and return here"))), br(), p(h5(strong("STEP 4: Enter the client ID and client Secret in the 'Credentials' box"))), br(), p(h5(strong("STEP 5: Click the 'Authenticate' button"))), br(), p(h5(strong("STEP 6: Wait for the system to authenticate your credentials and print out a reference ID"))), br(), p(h5(strong("Great! You can now proceed to scraping network data via the Spotify API."))), actionButton("nextTab", strong("Proceed")), hr() ) ) ), tabPanel( id = "tabA", value = "Atab", title = strong("Network Data"), icon = icon("table"), # load and run the CSS script includeCSS("style.css"), # load and run the javascript script includeScript("JSCode.js"), sidebarLayout( sidebarPanel( width = 2, id = "sidebar", actionButton("info", strong("Info"), icon = icon("info")), br(), br(), br(), tags$a(img(src = "spotify.png"), href = "https://open.spotify.com/"), br(), hr(), textInput("id", strong("Enter Artist's Spotify Id")), actionButton("run", strong("Related Data"), icon = icon("caret-right")),br(),hr(),br(), h5(strong("Collaborators Data")), actionButton("fetch", strong("Collab Data"), icon = icon("caret-right")),hr() ), mainPanel( # go to top button spsGoTop(id = "up",right = "3%",bottom = "10%",icon = icon("arrow-up",color = "green")), textInput("search", span(strong("Search Box"),style = "color:white;"), placeholder = "Search Google", width = "150px"),actionButton("search_bttn", strong("Search")),hr(), fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Related Artists Network Data")))))), fluidRow( column(12, withSpinner(reactableOutput("network_data",width = 1000,height = 400), type = 1)), ), fluidRow( column(6, downloadButton("down_csv", strong("Download CSV"), icon = icon("download"))), column(6, downloadButton("down_graphml", strong("Download GraphML"), icon = icon("download"))) ),br(),br(),br(), fluidRow(column(12, h3(strong(span(style = "color:white;text-align:center;",h4("Artists Collaboration Network Data")))))), fluidRow( column(12,withSpinner(reactableOutput("collabs_data", width = 1000, height = 400),type = 1)) ), downloadButton("down_flat",strong("Download CSV"),icon = icon("download")), br(), hr(), uiOutput("out") ) ) ), tabPanel( id = "tabB", value = "Btab", title = strong("80s Hits"), icon = icon("music"), sidebarLayout(sidebarPanel = "", mainPanel(tags$iframe( style = "border-radius:12px", src = "https://open.spotify.com/embed/playlist/37i9dQZF1DXb57FjYWz00c?utm_source=generator", width = "1350px", height = "550px", frameBorder = "0", allowfullscreen = "", allow = "autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture", loading = "lazy" ))) ), tabPanel( id = "tabD", strong("NodeXL YouTube"), icon = icon("youtube"), sidebarLayout(sidebarPanel(id = ""), mainPanel( tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/xKhYGRpbwOc", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ), hr(), tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/Gs4NPuKIXdo", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ), hr(), tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/J1W5uqAyHTg", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ), hr(), tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/zEgrruOITHw", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ), hr(), tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/pwsImFyc0lE", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ), hr(), tags$iframe( width = "620", height = "350", src = "https://www.youtube.com/embed/mjAq8eA7uOM", title = "YouTube video player", frameborder = "0", allow = "accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture", allowfullscreen = T ) )) ) ) # define server logic required to get Spotify's network data server <- function(input, output, session) { # set up Spotify API credentials environment authentication <- function(id, secret) { client_ID <- id client_secret <- secret # authenticate the spotify client side Sys.setenv(SPOTIFY_CLIENT_ID = client_ID) Sys.setenv(SPOTIFY_CLIENT_SECRET = client_secret) access_token <- get_spotify_access_token() } client_id <- reactive(as.character(input$client_id)) client_secret <- reactive(as.character(input$client_secret)) authenticate <- reactive(authentication( client_id(), client_secret() )) validation <- eventReactive(input$validate, { authenticate() }) output$valout <- renderText({ validation() }) # update nav bar page using the value of the tabPanel # (i.e. value = "Atab") observeEvent(input$nextTab, { updateNavbarPage(session, inputId = "navbar", selected = "Atab") }) # activate the search box search_input <- reactive(input$search) searchGoogle <- reactive(search_google(search_input(), rlang = F)) search_result <- eventReactive(input$search_bttn, { searchGoogle() }) output$out <- renderUI({ search_result() }) # render spotify # renderUI({ # tags$iframe(src = "https://open.spotify.com/") # }) # turn text input into a reactive object id_input <- reactive({ as.character(input$id) }) # wrap SpotifyNetwork functions in reactive wrappers # related_network <- reactive({ # related_artists_network(id_input()) # }) # artist_plot <- reactive({ # artists_popularity(id_input()) # }) nodes_table <- reactive({ related_artists_nodes(id_input()) }) edges_table <- reactive({ related_artists_edges(id_input()) }) # create event reactive element for each output # network_react <- eventReactive(input$run, { # related_network() # }) # artist_react <- eventReactive(input$run, { # artist_plot() # }) nodes_react <- eventReactive(input$run, { nodes_table() }) edges_react <- eventReactive(input$run, { edges_table() }) # function to wrangle nodes & edges data into a NodeXL flat file create_flatTabler <- function(dfN,dfE){ # scrape data from Vertex1 # as.vector(data,mode) converts the returned list into a vector popularity <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[3]]) popularity <- as.vector(popularity,"numeric") followers <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[4]]) followers <- as.vector(followers,"numeric") profile <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[5]]) profile <- as.vector(profile,"character") images <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[6]]) images <- as.vector(images,"character") genre <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex1"]])[[7]]) genre <- as.vector(genre,"character") # scrape data from Vertex2 # as.vector(data,mode) converts the returned list into a vector popularityB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[3]]) popularityB <- as.vector(popularityB,"numeric") followersB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[4]]) followersB <- as.vector(followersB,"numeric") profileB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[5]]) profileB <- as.vector(profileB,"character") imagesB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[6]]) imagesB <- as.vector(imagesB,"character") genreB <- apply(dfE,1,function(df) subset(dfN,dfN$name == df[["Vertex2"]])[[7]]) genreB <- as.vector(genreB,"character") # assign scraped data for Vertex1 to new columns dfE$`Vertex1 popularity` <- popularity dfE$`Vertex1 followers` <- followers dfE$`Vertex1 profile` <- profile dfE$`Vertex1 images` <- images dfE$`Vertex1 genre` <- genre # assign scraped data for Vertex2 to new columns dfE$`Vertex2 popularity` <- popularityB dfE$`Vertex2 followers` <- followersB dfE$`Vertex2 profile` <- profileB dfE$`Vertex2 images` <- imagesB dfE$`Vertex2 genre` <- genreB dfE$`Edge Weight` <- round(dfE$`Vertex1 popularity`/dfE$`Vertex2 popularity`,2) dfE <- dfE |> relocate(`Edge Weight`,.after = Vertex2) return(dfE) } # parse edges_react to function flat_file <- reactive({create_flatTabler(nodes_react(),edges_react())}) # add edge metadata # flat_file()["Edge Weight"] <- reactive({round(flat_file()$`Vertex1 popularity`/flat_file()$`Vertex2 popularity`,2)}) # # flat_file() <- flat_file() |> # reactive({relocate(`Edge Weight`,.after = Vertex2)}) # create flat file event reactive object flat_react <- eventReactive(input$run,{ flat_file() }) # # render outputs # output$network <- renderVisNetwork({ # network_react() # }) # # output$plot <- renderPlotly({ # artist_react() # }) # function to download nodes data file output$down_csv <- downloadHandler( filename = function() { paste("Related_artists", ".csv", sep = "") }, content = function(file) { write.csv(flat_react(), file) } ) output$network_data <- renderReactable({ tryCatch( { reactable(flat_react(), theme = reactableTheme( highlightColor = "#00e600", borderColor = "#00e600", borderWidth = 3 ), outlined = T, bordered = T, filterable = T, striped = T, compact = T, highlight = T, defaultColDef = colDef( align = "center", headerStyle = list(background = "#00e600") ), paginationType = "simple" ) }, error = function(e){ message("There was an error!") print(e) } ) }) # function to generate GraphML file create_graphml <- function(nodes,edges){ # create new graph object graph <- graph_from_data_frame(edges) # add attributes to graph nodes { V(graph)$Name <- nodes$name V(graph)$Popularity <- nodes$popularity V(graph)$Followers <- nodes$followers V(graph)$Profile <- nodes$profile V(graph)$Images <- nodes$images V(graph)$Genre <- nodes$genre } return(graph) } # make function reactive graphml_react <- reactive({ create_graphml(nodes_react(), edges_react())}) # make function event reactive so that it is triggered # by run action button graphmlReact <- eventReactive(input$run,{ graphml_react() }) # write GraphML download function output$down_graphml <- downloadHandler( filename = function(){ paste("Related_artists",".graphml",sep = "") }, content = function(file){ write_graph(graphmlReact(),file,format = "graphml") } ) # import get_artists_collaborators() function source("Collaborators.R") # wrap in reactive wrappers artists_collaborations <- reactive({get_artists_collaborators(id_input())}) # make event reactive collabs_react <- eventReactive(input$fetch,{artists_collaborations()}) output$collabs_data <- renderReactable({ tryCatch( { reactable(collabs_react(), theme = reactableTheme( highlightColor = "#3498DA", borderColor = "#3498DA", borderWidth = 3 ), outlined = T, bordered = T, filterable = T, striped = T, compact = T, highlight = T, defaultColDef = colDef( align = "center", headerStyle = list(background = "#3498DA") ), paginationType = "simple" ) }, error = function(e){ message("There was an error!") print(e) } ) }) # activate download button output$down_flat <- downloadHandler( filename = function(){ paste("CollabData",".csv",sep = "") }, content = function(file){ write.csv(collabs_react(),file) } ) # function to download edges data file # output$down_edges <- downloadHandler( # filename = function() { # paste("Edges", ".csv", sep = "") # }, # content = function(file) { # write.csv(edges_react(), file) # } # ) # output$edges <- renderReactable({ # reactable(edges_react(), # theme = reactableTheme( # highlightColor = "#00FFAB", # borderColor = "#00FFAB" # ), # outlined = T, # bordered = T, # filterable = T, # striped = T, # compact = T, # highlight = T, # defaultColDef = colDef( # align = "center", # headerStyle = list(background = "#00FFAB") # ), # paginationType = "simple" # ) # }) observeEvent(input$info, { shinyalert( title = "About Software", closeOnEsc = T, confirmButtonCol = "#006400", imageUrl = "spotify.png", closeOnClickOutside = T, confirmButtonText = "Got It", showConfirmButton = T, animation = "pop", timer = 20000, text = "The Spotify Data Importer allows a user to query the Spotify API and get network data of artists that are related to a particular artist. You can also get data of artists that have collaborated together. It typically takes between 16 and 20 seconds to get a response from the Spotify server for related artists network data and more than that for artists collaboration network data." ) }) observeEvent(input$fetch,{ shinyalert( closeOnEsc = T, confirmButtonText = "Got It!", confirmButtonCol = "#3498DA", closeOnClickOutside = T, showConfirmButton = T, animation = "slide-from-top", cancelButtonText = T, timer = 10000, text = "This may take a while to run, sorry!" ) }) } # Run the application shinyApp(ui = ui, server = server)