# the following code is collected from this hugging face tutorial # https://huggingface.co/learn/cookbook/rag_zephyr_langchain # langchain from typing import TypedDict from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_huggingface import HuggingFacePipeline # huggingface from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline # pytorch import torch # gradio import gradio as gr # stdlib from asyncio import sleep # local from vector_store import get_document_database class ChatMessage(TypedDict): role: str metadata: dict content: str # MODEL_NAME = "meta-llama/Llama-3.2-3B" # MODEL_NAME = "google/gemma-7b" MODEL_NAME = "google/gemma-2-2b-it" # bnb_config = BitsAndBytesConfig( # load_in_4bit=True, # bnb_4bit_use_double_quant=True, # bnb_4bit_quant_type="nf4", # bnb_4bit_compute_dtype=torch.bfloat16 # ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, # quantization_config=bnb_config, # device_map="cpu", torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) text_generation_pipeline = pipeline( model=model, tokenizer=tokenizer, task="text-generation", temperature=0.2, do_sample=True, repetition_penalty=1.1, return_full_text=True, max_new_tokens=400, ) llm = HuggingFacePipeline(pipeline=text_generation_pipeline) # generate a vector store print("creating the document database") db = get_document_database("learning_material/*/*/*") print("Document database is ready") def generate_prompt(message_history: list[ChatMessage], max_history=5): # creating the prompt template in the shape of a chat prompt # this is done so that it could be easily expanded # https://www.mirascope.com/post/langchain-prompt-template prompt_template = ChatPromptTemplate([ ("system", """You are 'thesizer', a HAMK thesis assistant. You will help the user with technicalities on writing a thesis for hamk. If you can't find the answer from the context given to you, you will tell the user that you cannot assist with the specific topic. You speak both Finnish and English by following the user's language. Continue the conversation with a single response from the AI."""), ("system", "{context}"), ]) # include the examples in the prompt if the conversation is starting if len(message_history) < 4: prompt_template.append( ("assistant", "Hei! Kuinka voin auttaa opinnäytetyösi kanssa?"), ) prompt_template.append( ("assistant", "Hello! How can I help you with authoring your thesis?"), ) # add chat messages here (only include up to the max amount) for message in message_history[-max_history:]: prompt_template.append( (message["role"], message["content"]) ) # this is here so that the stupid thing wont start roleplaying as the user # and therefore making up the conversation prompt_template.append( ("assistant", ":") ) return prompt_template async def generate_answer(message_history: list[ChatMessage]): # initialize the similarity search n_of_best_results = 4 retriever = db.as_retriever( search_type="similarity", search_kwargs={"k": n_of_best_results}) print("generating prompt") prompt = generate_prompt(message_history, max_history=5) print("prompt is ready") # create the pipeline for generating a response # RunnablePassthrough handles the invoke parameters retrieval_chain = ( {"context": retriever, "user_input": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) # fetch the context using the latest message as the fetch string user_input = message_history[-1]["content"] print("invoking") response = retrieval_chain.invoke(user_input) print("response recieved from invoke") # debugging print("=====raw response=====") print(response) # get the next response from the AI # first parse until the last user input and then get the first response parsed_answer = response.split( str(user_input) ).pop().split(":", 1).pop().strip() print(repr(parsed_answer)) # replace newlines with br tags, since the gr.chatbot does not work # well with newlines return parsed_answer.replace("\n\n", "
") def update_chat(user_message: str, history: list): return "", history + [{"role": "user", "content": user_message}] async def handle_conversation( history: list[ChatMessage], characters_per_second=80 ): bot_message = await generate_answer(history) new_message: ChatMessage = {"role": "assistant", "metadata": {"title": None}, "content": ""} history.append(new_message) for character in bot_message: history[-1]['content'] += character yield history await sleep(1 / characters_per_second) def create_interface(): with gr.Blocks() as interface: gr.Markdown("# 📄 Thesizer: HAMK Thesis Assistant") gr.Markdown("Ask for help with authoring the HAMK thesis!") gr.Markdown("## Chat interface") with gr.Column(): chatbot = gr.Chatbot(type="messages") with gr.Row(): user_input = gr.Textbox( label="You:", placeholder="Type your message here...", show_label=False ) send_button = gr.Button("Send") # handle the messages being sent send_button.click( fn=update_chat, inputs=[user_input, chatbot], outputs=[user_input, chatbot], queue=False ).then( fn=handle_conversation, inputs=chatbot, outputs=chatbot ) # pressing enter instead of the button user_input.submit( fn=update_chat, inputs=[user_input, chatbot], outputs=[user_input, chatbot], queue=False ).then( fn=handle_conversation, inputs=chatbot, outputs=chatbot ) return interface if __name__ == "__main__": create_interface().launch()