import gradio as gr
import torch
import cv2
### CAM explainer code from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools) ###
class XGradCAM:
def __init__(self, model, targetLayer, targetClass, image, dims, device):
# set any frozen layers to trainable
# gradcam cannot be calculated without it
for param in model.parameters():
if not param.requires_grad:
param.requires_grad = True
self.model = model
self.targetLayer = targetLayer
self.targetClass = targetClass
self.image = image
self.dims = dims
self.device = device
def visualize(self):
from pytorch_grad_cam import XGradCAM, GuidedBackpropReLUModel
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image, deprocess_image, preprocess_image
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
self.model.eval().to(self.device)
image = cv2.resize(self.image, self.dims)
# convert to rgb if image is grayscale
converted = False
if len(image.shape) == 2:
converted = True
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
rgb_img = np.float32(image) / 255
input_tensor = preprocess_image(rgb_img,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_tensor = input_tensor.to(self.device)
self.targetLayer = [self.targetLayer]
if self.targetClass is None:
targets = None
else:
targets = [ClassifierOutputTarget(self.targetClass)]
cam = XGradCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())
# convert back to grayscale if that is the initial dim
if converted:
input_tensor = input_tensor[:, 0:1, :, :]
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
eigen_smooth=False)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
gb_model = GuidedBackpropReLUModel(model=self.model, use_cuda=torch.cuda.is_available())
gb = gb_model(input_tensor, target_category=None)
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask * gb)
gb = deprocess_image(gb)
print("XGradCAM, Guided backpropagation, and Guided XGradCAM are generated. ")
return cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
class EigenCAM:
def __init__(self, model, targetLayer, boxes, classes, colors, reshape, image, device):
self.model = model
self.targetLayer = targetLayer
self.boxes = boxes
self.classes = classes
self.colors = colors
self.reshape = reshape
self.image = image
self.device = device
def visualize(self):
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, scale_cam_image
import torchvision
import torch
import cv2
import numpy as np
self.model.eval().to(self.device)
rgb_img = np.float32(self.image) / 255
transform = torchvision.transforms.ToTensor()
input_tensor = transform(rgb_img)
input_tensor = input_tensor.unsqueeze(0)
input_tensor = input_tensor.to(self.device)
self.targetLayer = [self.targetLayer]
if self.reshape is None:
cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())
else:
cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available(),
reshape_transform=self.reshape)
targets = []
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
eigen_smooth=False)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in self.boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
eigencam_image_renormalized = show_cam_on_image(rgb_img, renormalized_cam, use_rgb=True)
for i, box in enumerate(self.boxes):
color = self.colors[i]
cv2.rectangle(
eigencam_image_renormalized,
(box[0], box[1]),
(box[2], box[3]),
color, 2
)
cv2.putText(eigencam_image_renormalized, self.classes[i], (box[0], box[1] - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
print("EigenCAM is generated. ")
return eigencam_image_renormalized
### For Gradio Demo ###
def xgradcam(image, model_code, target_class):
global model, target_layer
exec(model_code, globals())
if target_class == "":
target_class = None
else:
target_class = int(target_class)
image_dims = (224, 224)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
xgradcam = XGradCAM(model, target_layer, target_class, image, image_dims, device)
return xgradcam.visualize()
def eigencam(image, model_code, class_code, process_code, reshape_code):
global input_image, model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape
input_image = cv2.resize(image, (640, 640))
exec(model_code, globals())
exec(class_code, globals())
exec(process_code, globals())
exec(reshape_code, globals())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
eigencam = EigenCAM(model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape, input_image, device)
return eigencam.visualize()
with gr.Blocks() as demo:
gr.Markdown(
"""
# Class Activation Mapping (CAM) Explainer Demo
This is a demo for CAM explainer from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools). \
CAM is an approach which localizes regions in the image responsible for a class prediction. \
The demo shows visualization of XGradCAM for object classification model and EigenCAM for object detection model.
"""
)
with gr.Tab("XGradCAM"):
with gr.Row():
with gr.Column():
xgradcam_image = gr.Image(label="Input Image")
gr.Markdown(
"""
Load the pretrained model to the variable model
depending on how it was saved. Then, specify target_layer
(normally the last convolutional layer) to compute CAM for. \
Here are some common choices:
- FasterRCNN: model.backbone
- ResNet18 and 50: model.layer4
- VGG and DenseNet161: model.features
Please don't change the variable names in the following code.
"""
)
xgradcam_model = gr.Code(label="Model and Target Layer", value=
"""
from torchvision.models import resnet50, ResNet50_Weights
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
target_layer = model.layer4
""", language="python")
gr.Markdown(
"""
Enter the target category as an integer to compute CAM for. It is the category index in the range [0, NUM_OF_CLASSES-1]
based on the training dataset. \
If it is left blank, the highest scoring category will be used.
"""
)
xgradcam_targetClass = gr.Textbox(label="Target Category")
xgradcam_output = gr.Image()
xgradcam_button = gr.Button("Submit")
with gr.Tab("EigenCAM"):
with gr.Row():
with gr.Column():
eigencam_image = gr.Image(label="Input Image")
gr.Markdown(
"""
Load the pretrained model to the variable model
depending on how it was saved. Then, specify target_layer
(normally the last convolutional layer) to compute CAM for. \
Here are some common choices:
- FasterRCNN: model.backbone
- ResNet18 and 50: model.layer4
- VGG and DenseNet161: model.features
Please don't change the variable names in the following code.
"""
)
eigencam_model = gr.Code(label="Model and Target Layer", value=
"""
from torchvision.models.detection import fasterrcnn_resnet50_fpn
model = fasterrcnn_resnet50_fpn(pretrained=True).eval()
target_layer = model.backbone
""", language="python")
gr.Markdown(
"""
In the case there is no class name in the output from the model, specify class_labels
as a list to print them with corresponding bounding box in the image. \
Depending on the model, the class name might not be needed (e.g. YOLO). Then, create color
as a list with a size of the number of classes.
"""
)
eigencam_class = gr.Code(label="Class Name", value=
"""
import numpy as np
class_labels = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella',
'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet',
'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush']
color = np.random.uniform(0, 255, size=(len(class_labels), 3))
""", language="python")
gr.Markdown(
"""
Get output
of the model (in the case of FasterRCNN, convert input_image
to a tensor first). Then, write a custom process_output
function to process the outputs from the model. \
You should get bounding_box_coordinates
, class_names
, and box_colors
of the detected objects with a higher detection score than detection_threshold
value. \
If you use other models than FasterRCNN, you need to make your own custom process function to match the structure of the outputs from this function.
"""
)
eigencam_process = gr.Code(label="Output Processing", value=
"""
import torchvision
transform = torchvision.transforms.ToTensor()
input_tensor = transform(np.float32(input_image) / 255).unsqueeze(0)
output = model(input_tensor)[0]
def process_output(output, class_labels, color, detection_threshold):
boxes, classes, labels, colors = [], [], [], []
box = output['boxes'].tolist()
name = [class_labels[i] for i in output['labels'].detach().numpy()]
label = output['labels'].detach().numpy()
for i in range(len(name)):
score = output['scores'].detach().numpy()[i]
if score < detection_threshold:
continue
boxes.append([int(b) for b in box[i]])
classes.append(name[i])
colors.append(color[label[i]])
return boxes, classes, colors
detection_threshold = 0.9
bounding_box_coordinates, class_names, box_colors = process_output(output, class_labels, color, detection_threshold)
""", language="python")
gr.Markdown(
"""
Write a custom reshape
function to get the activations from the model and process them into 2D format. \
For example, the backbone of FasterRCNN outputs 5 different tenors with different spatial size as an Ordered Dict, \
thus, we need a custom function which aggregates these image tensors, resizes them to a common shape, and concatenates them. \
If you use other models than FasterRCNN, you need to write your own custom reshape function.
"""
)
eigencam_reshape = gr.Code(label="Reshape", value=
"""
def reshape(x):
target_size = x['pool'].size()[-2 : ]
activations = []
for key, value in x.items():
activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
""", language="python")
eigencam_output = gr.Image()
eigencam_button = gr.Button("Submit")
xgradcam_button.click(xgradcam, inputs=[xgradcam_image, xgradcam_model, xgradcam_targetClass], outputs=xgradcam_output)
eigencam_button.click(eigencam, inputs=[eigencam_image, eigencam_model, eigencam_class, eigencam_process, eigencam_reshape], outputs=eigencam_output)
demo.launch()