# app.py # ============= # This is a complete app.py file for a Gradio application that allows users to upload an audio file and generate a video with frequency visualization. import gradio as gr import numpy as np import librosa import os import cv2 import matplotlib.pyplot as plt # Function to generate frequency visualization frames from audio def generate_frequency_visualization(audio_path, fps, num_bars, sensitivity): try: # Load the audio file y, sr = librosa.load(audio_path, sr=None) duration = librosa.get_duration(y=y, sr=sr) print(f"Loaded audio file with sampling rate: {sr}, and duration: {duration} seconds.") if sr == 0 or len(y) == 0: raise ValueError("Invalid audio file: sampling rate or audio data is zero.") # Perform Short-Time Fourier Transform (STFT) hop_length = int(sr / fps) # Hop length to match the desired fps S = np.abs(librosa.stft(y, n_fft=2048, hop_length=hop_length)) S = S[:num_bars, :] # Limit the frequency bands to match the number of bars # Normalize frequency power with sensitivity adjustment S = (S / np.max(S)) * sensitivity # Create a directory to save the frames os.makedirs('frames', exist_ok=True) # Generate and save each frame for i in range(S.shape[1]): # Create black background img = np.zeros((720, 1280, 3), dtype=np.uint8) # Get the bar heights for the current frame heights = (S[:, i] * 600).astype(int) # Calculate bar positions bar_width = 80 spacing = (1280 - num_bars * bar_width) // (num_bars + 1) for j, height in enumerate(heights): x = spacing + j * (bar_width + spacing) y = 720 - height color = tuple(int(c * 255) for c in plt.cm.viridis(j / num_bars)[:3]) # Use Viridis colormap cv2.rectangle(img, (x, 720), (x + bar_width, y), color, -1) # Save the frame frame_path = f'frames/frame_{i:04d}.png' cv2.imwrite(frame_path, img) print(f"Generated {S.shape[1]} frames for visualization.") return 'frames', duration except Exception as e: print(f"Error generating frequency visualization: {e}") return None, None # Function to create a video from the generated frames def create_video_from_frames(frames_directory, audio_path, fps): try: # Get the list of frame files frame_files = [os.path.join(frames_directory, f) for f in os.listdir(frames_directory) if f.endswith('.png')] frame_files.sort() if not frame_files: raise ValueError("No frames found to create the video.") # Get video dimensions from the first frame first_frame = cv2.imread(frame_files[0]) height, width, _ = first_frame.shape # Initialize video writer video_path = 'output_video.mp4' fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) # Write frames to video for frame_file in frame_files: frame = cv2.imread(frame_file) video_writer.write(frame) video_writer.release() # Merge audio with video using ffmpeg os.system(f"ffmpeg -i {video_path} -i {audio_path} -c:v copy -c:a aac -strict experimental output_with_audio.mp4 -y") print(f"Video created with {len(frame_files)} frames.") return 'output_with_audio.mp4' except Exception as e: print(f"Error creating video from frames: {e}") return None # Gradio interface function def process_audio(audio, sensitivity): audio_path = audio fps = 60 num_bars = 12 frames_directory, duration = generate_frequency_visualization(audio_path, fps, num_bars, sensitivity) if frames_directory: video_path = create_video_from_frames(frames_directory, audio_path, fps) return video_path else: return None # Create the Gradio interface with explanations and recommendations iface = gr.Interface( fn=process_audio, inputs=[ gr.Audio(type="filepath", label="Upload Audio File"), gr.Slider(minimum=0.1, maximum=5.0, step=0.1, value=1.0, label="Sensitivity") ], outputs=gr.Video(label="Generated Video"), title="Audio Frequency Visualization", description="Upload an audio file to generate a video with frequency visualization. " "Supported file types: WAV, MP3, FLAC. " "Recommended file duration: 10 seconds to 5 minutes. " "The visualization will consist of 12 bars representing frequency ranges. Adjust sensitivity to control bar movement.", ) # Launch the Gradio interface if __name__ == "__main__": iface.launch() # Dependencies # ============= # The following dependencies are required to run this app: # - librosa # - numpy # - opencv-python # - matplotlib # - ffmpeg (installed separately)