from transformers import AutoModelWithLMHead, AutoTokenizer import gradio as gr model_name = "mrm8488/t5-base-finetuned-question-generation-ap" text2text_tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelWithLMHead.from_pretrained(model_name) def text2text(context, answer): input_text = f"answer: {answer} context: <{context}>" features = text2text_tokenizer([input_text], return_tensors="pt") output = model.generate(input_ids=features["input_ids"], attention_mask=features["attention_mask"], max_length=100) response = text2text_tokenizer.decode(output[0]) return response context = gr.Textbox(lines=10, label="English", placeholder="Context") answer = gr.Textbox(lines=1, label="Answer") out = gr.Textbox(lines=1, label="Generated question") gr.Interface(text2text, inputs=[context, answer], outputs=out).launch()