from transformers import BartForSequenceClassification, BartTokenizer import gradio as grad model_name = "facebook/bart-large-mnli" bart_tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForSequenceClassification.from_pretrained(model_name) def classify(text, label): token_ids = bart_tokenizer.encode(text, label, return_tensors="pt") token_logits = model(token_ids)[0] entail_contra_token_logits = token_logits[:, [0, 2]] probabilities = entail_contra_token_logits.softmax(dim=1) response = probabilities[:, 1].item() * 100 return response in_text = grad.Textbox(lines=1, label="English", placeholder="Text to be classified") in_labels = grad.Textbox(lines=1, label="Label", placeholder="Input a label") out = grad.Textbox(lines=1, label="Probability of label being true is ") grad.Interface(classify, inputs=[in_text, in_labels], outputs=[out]).launch()