import gradio as gr from transformers import GPTNeoModel, GPT2TokenizerFast def generate_text(prompt, max_length, temperature, top_p, repetition_penalty): tokenizer = GPT2TokenizerFast.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B") model = GPTNeoModel.from_pretrained("JakeTurner616/Adonalsium-gpt-neo-1.3B") # Check if tokenizer has a padding token, if not, add one if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings to fit the new tokenizer inputs = tokenizer(prompt, return_tensors="pt", padding=True) outputs = model.generate( input_ids=inputs["input_ids"], max_length=max_length, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=2 ) generated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] return generated_texts iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, label="Input Prompt"), gr.Slider(minimum=10, maximum=300, step=10, value=100, label="Max Length"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.7, label="Temperature"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Top P"), gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.1, label="Repetition Penalty") ], outputs="text", ) iface.launch()