import gradio as gr from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline # Load the model and tokenizer model_name = "JakeTurner616/Adonalsium-gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # Create a pipeline for text generation text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer) # Define a function that uses the model to generate text based on the given prompt and parameters def generate_text(prompt, max_length, temperature, top_p, repetition_penalty): return text_generator( prompt, max_length=max_length, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, num_return_sequences=1 )[0]['generated_text'] # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, label="Input Prompt"), gr.Slider(minimum=10, maximum=300, step=10, default=100, label="Max Length"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, default=0.7, label="Temperature"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, default=0.9, label="Top P"), gr.Slider(minimum=1.0, maximum=2.0, step=0.1, default=1.1, label="Repetition Penalty"), ], outputs="text", title="Cosmere Series Text Generator", description="Adjust the sliders to control text generation parameters.", ) # Launch the interface iface.launch()