import streamlit as st
import pandas as pd
from sklearn.metrics import (
accuracy_score,
precision_score,
recall_score,
f1_score)
from imblearn.metrics import specificity_score
import difflib as dl
import os
# Title and description
st.title("Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text")
st.markdown("Supplemantary material accompanying the following paper: Jekaterina Novikova (2021).[Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text](https://arxiv.org/abs/2109.11888). \
*In: The 7th Workshop on Noisy User-generated Text at EMNLP*, 2021.", unsafe_allow_html=True)
st.image('img/poster2.png')
st.write("[Link](https://arxiv.org/abs/2109.11888) to the high-res version of the poster.")
# Loading data
my_data = "data/df_test_all.csv"
@st.cache(persist = True)
def load_data(dataset):
df = pd.read_csv(os.path.join(dataset))
return df
df = load_data(my_data)
# Sidebar to select type and level of perturbation selection menu
st.sidebar.title("Selection Menu")
st.sidebar.markdown("Please select the type and the level of text perturbation below.
", unsafe_allow_html=True)
type = st.sidebar.selectbox('Type of perturbations', ["Original / No perturbations", "Delete filled pauses", "Delete info units", "Back-translation", "Substitute with WordNet synonyms"])
level = None
iu_type = None
if type in ["Substitute with word2vec", "Substitute with WordNet synonyms"]:
level = st.sidebar.slider('Level of perturbations:', min_value = 0.1, max_value = 0.90, step = 0.10)
elif type == "Delete info units":
iu_type = st.sidebar.radio('Type of info units:', ["Action only", "Location only", "Object only", "Subject only"])
# select column names based on subtype of perturbations:
def select_pred_column(type, level = None, iu_type = None):
if type == "Original / No perturbations":
prediction = "pred_original"
elif type == "Delete filled pauses":
prediction = "pred_no_filled_pause"
elif type == "Delete info units":
if iu_type == "Action only":
prediction = "pred_no_iu_action"
elif iu_type == "Location only":
prediction = "pred_no_iu_loc"
elif iu_type == "Object only":
prediction = "pred_no_iu_obj"
elif iu_type == "Subject only":
prediction = "pred_no_iu_subj"
elif type == "Back-translation":
prediction = "pred_back_transl"
elif type == "Substitute with word2vec":
lvl_str = str(level * 100)[:2]
prediction = "pred_w2v_"+lvl_str
elif type == "Substitute with WordNet synonyms":
lvl_str = str(level * 100)[:2]
prediction = "pred_wnet_"+lvl_str
return prediction
def select_aug_column(type, level = None, iu_type = None):
if type == "Original / No perturbations":
augmentation = "utterances"
elif type == "Delete filled pauses":
augmentation = "aug_no_filled_pause"
elif type == "Delete info units":
if iu_type == "Action only":
augmentation = "aug_no_iu_action"
elif iu_type == "Location only":
augmentation = "aug_no_iu_loc"
elif iu_type == "Object only":
augmentation = "aug_no_iu_obj"
elif iu_type == "Subject only":
augmentation = "aug_no_iu_subj"
elif type == "Back-translation":
augmentation = "aug_back_transl"
elif type == "Substitute with word2vec":
lvl_str = str(level * 100)[:2]
augmentation = "aug_w2v_"+lvl_str
elif type == "Substitute with WordNet synonyms":
lvl_str = str(level * 100)[:2]
augmentation = "aug_wnet_"+lvl_str
return augmentation
#part I
st.header("1. Classification Performance")
st.write("The performance of the fine-tuned BERT model tested on the samples of text with applied perturbations, as selected in the Selection Menu.")
if st.button("Calculate performance"):
acc = accuracy_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
f1 = f1_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
prec = precision_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
rec = recall_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
spec = specificity_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
df_perf = pd.DataFrame([acc, f1, prec, rec, spec])
df_perf.index = ["Accuracy", "F1-score", "Precision", "Recall/Sensitivity", "Specificity"]
df_perf.columns = ["Performance"]
st.table( df_perf.T)
#part II
st.header("2. Examples of Text Perturbations")
def text_to_code(text):
if text == "Healthy Control (label 0)":
code = [0]
elif text == "Alzheimer's Disease (label 1)":
code = [1]
else:
code = [0,1]
return code
dx = st.radio('Real disease:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "both"])
pred1 = st.radio('Original prediction (before text perturbation):', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"])
pred2 = st.radio('Prediction after text perturbation:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"])
subject_ids = df[(df["label"].isin(text_to_code(dx))) & \
(df["pred_original"].isin(text_to_code(pred1))) &\
(df[select_pred_column(type, level, iu_type)].isin(text_to_code(pred2)))]["subject_id"]
st.write('There are', subject_ids.shape[0], 'text sample(s) that correspond to such a selection.')
if subject_ids.shape[0] > 0:
subj_choice = st.selectbox("Select a text sample:", subject_ids)
df_select = df[df.subject_id == subj_choice][["subject_id", "sex", "age", "label", "pred_original", select_pred_column(type, level, iu_type)]]
df_select.age = df_select.age.astype(int)
df_select.columns = ["SubjectID", "Sex", "Age", "Real disease label", "Original prediction", "Prediction after perturbation"]
st.table(df_select)
text_orig = df[df.subject_id == subj_choice]["utterances"].values[0]
text_aug = df[df.subject_id == subj_choice][select_aug_column(type, level, iu_type)].values[0]
words_aug = set(text_aug.replace("'"," ' ").split())
words_orig = set(text_orig.replace("'"," ' ").split())
s1 = text_orig.replace("'"," ' ").split()
s2 = text_aug.replace("'"," ' ").split()
seqmatcher = dl.SequenceMatcher(None, s1, s2, autojunk=False)
res_orig, res_aug = [], []
for tag, a0, a1, b0, b1 in seqmatcher.get_opcodes():
if tag == "equal":
res_orig += s1[a0:a1]
res_aug += s2[b0:b1]
else:
res_orig += [" "+" ".join(s1[a0:a1])+""]
res_aug += [" "+" ".join(s2[b0:b1])+" "]
st.write("**The original text**
(words are coloured in blue if they were selected for perturbation):", unsafe_allow_html=True)
st.write(''+' '.join(res_orig)+'
', unsafe_allow_html=True)
st.write("**The perturbed text**
(words are coloured in red if they appeared after perturbation):", unsafe_allow_html=True)
st.write(''+' '.join(res_aug)+'
', unsafe_allow_html=True)