import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel from monitoring import PerformanceMonitor, measure_time # Model configurations MODEL_OPTIONS = { "Base Model": { "id": "HuggingFaceTB/SmolLM2-1.7B-Instruct", "is_base": True }, "Fine-tuned Model": { "id": "Joash2024/Math-SmolLM2-1.7B", "is_base": False } } # Initialize performance monitor monitor = PerformanceMonitor() print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct") tokenizer.pad_token = tokenizer.eos_token def format_prompt(problem: str, problem_type: str) -> str: """Format input prompt for the model""" if problem_type == "Derivative": return f"""Given a mathematical function, find its derivative. Function: {problem} The derivative of this function is:""" elif problem_type == "Addition": return f"""Solve this addition problem. Problem: {problem} The solution is:""" else: # Roots or Custom return f"""Find the derivative of this function. Function: {problem} The derivative is:""" @measure_time def get_model_response(problem: str, problem_type: str, model_info) -> str: """Get response from a specific model""" try: # Load model if model_info["is_base"]: print(f"Loading {model_info['id']}...") model = AutoModelForCausalLM.from_pretrained( model_info["id"], device_map="auto", torch_dtype=torch.float16 ) else: print("Loading base model for fine-tuned...") base = AutoModelForCausalLM.from_pretrained( "HuggingFaceTB/SmolLM2-1.7B-Instruct", device_map="auto", torch_dtype=torch.float16 ) print(f"Loading {model_info['id']}...") model = PeftModel.from_pretrained(base, model_info["id"]) model.eval() # Format prompt and generate prompt = format_prompt(problem, problem_type) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_length=100, num_return_sequences=1, temperature=0.1, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # Decode and extract response generated = tokenizer.decode(outputs[0], skip_special_tokens=True) response = generated[len(prompt):].strip() # Clean up del model if not model_info["is_base"]: del base torch.cuda.empty_cache() return response except Exception as e: return f"Error: {str(e)}" def solve_problem(problem: str, problem_type: str, model_type: str) -> tuple: """Solve a math problem using selected model""" if not problem: return "Please enter a problem", None # Record problem type monitor.record_problem_type(problem_type) # Get response from selected model model_info = MODEL_OPTIONS[model_type] response, time_taken = get_model_response(problem, problem_type, model_info) # Format response with steps output = f"""Solution: {response} Let's verify this step by step: 1. Starting with f(x) = {problem} 2. Applying differentiation rules 3. We get f'(x) = {response}""" # Record metrics monitor.record_response_time(model_type, time_taken) monitor.record_success(model_type, not response.startswith("Error")) # Get updated statistics stats = monitor.get_statistics() # Format statistics for display stats_display = f""" ### Performance Metrics #### Response Times (seconds) - {model_type}: {stats.get(f'{model_type}_avg_response_time', 0):.2f} avg #### Success Rates - {model_type}: {stats.get(f'{model_type}_success_rate', 0):.1f}% #### Problem Types Used """ for ptype, percentage in stats.get('problem_type_distribution', {}).items(): stats_display += f"- {ptype}: {percentage:.1f}%\n" return output, stats_display # Create Gradio interface with gr.Blocks(title="Mathematics Problem Solver") as demo: gr.Markdown("# Mathematics Problem Solver") gr.Markdown("Test our models on mathematical problems") with gr.Row(): with gr.Column(): problem_type = gr.Dropdown( choices=["Addition", "Root Finding", "Derivative", "Custom"], value="Derivative", label="Problem Type" ) model_type = gr.Dropdown( choices=list(MODEL_OPTIONS.keys()), value="Fine-tuned Model", label="Model to Use" ) problem_input = gr.Textbox( label="Enter your math problem", placeholder="Example: x^2 + 3x" ) solve_btn = gr.Button("Solve", variant="primary") with gr.Row(): solution_output = gr.Textbox(label="Solution", lines=5) # Performance metrics display with gr.Row(): metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*") # Example problems gr.Examples( examples=[ ["x^2 + 3x", "Derivative", "Fine-tuned Model"], ["144", "Root Finding", "Fine-tuned Model"], ["235 + 567", "Addition", "Fine-tuned Model"], ["\\sin{\\left(x\\right)}", "Derivative", "Fine-tuned Model"], ["e^x", "Derivative", "Fine-tuned Model"], ["\\frac{1}{x}", "Derivative", "Fine-tuned Model"], ["x^3 + 2x", "Derivative", "Fine-tuned Model"], ["\\cos{\\left(x^2\\right)}", "Derivative", "Fine-tuned Model"] ], inputs=[problem_input, problem_type, model_type], outputs=[solution_output, metrics_display], fn=solve_problem, cache_examples=True, ) # Connect the interface solve_btn.click( fn=solve_problem, inputs=[problem_input, problem_type, model_type], outputs=[solution_output, metrics_display] ) if __name__ == "__main__": demo.launch()