import torch import numpy as np from salad.models.base_model import BaseModel from salad.utils import nputil, thutil from salad.utils.spaghetti_util import clip_eigenvalues, project_eigenvectors class Phase1Model(BaseModel): def __init__(self, network, variance_schedule, **kwargs): super().__init__(network, variance_schedule, **kwargs) @torch.no_grad() def sample( self, batch_size=0, return_traj=False, ): x_T = torch.randn([batch_size, 16, 16]).to(self.device) traj = {self.var_sched.num_steps: x_T} for t in range(self.var_sched.num_steps, 0, -1): z = torch.randn_like(x_T) if t > 1 else torch.zeros_like(x_T) alpha = self.var_sched.alphas[t] alpha_bar = self.var_sched.alpha_bars[t] sigma = self.var_sched.get_sigmas(t, flexibility=0) c0 = 1.0 / torch.sqrt(alpha) c1 = (1 - alpha) / torch.sqrt(1 - alpha_bar) x_t = traj[t] beta = self.var_sched.betas[[t] * batch_size] e_theta = self.net(x_t, beta=beta) # print(e_theta.norm(-1).mean()) x_next = c0 * (x_t - c1 * e_theta) + sigma * z traj[t - 1] = x_next.detach() traj[t] = traj[t].cpu() if not return_traj: del traj[t] if return_traj: return traj else: return traj[0] def sampling_gaussians(self, num_shapes): """ Return: ldm_gaus: np.ndarray gt_gaus: np.ndarray """ ldm_gaus = self.sample(num_shapes) if self.hparams.get("global_normalization"): if not hasattr(self, "data_val"): self._build_dataset("val") if self.hparams.get("global_normalization") == "partial": ldm_gaus = self.data_val.unnormalize_global_static(ldm_gaus, slice(12,None)) elif self.hparams.get("global_normalization") == "all": ldm_gaus = self.data_val.unnormalize_global_static(ldm_gaus, slice(None)) ldm_gaus = clip_eigenvalues(ldm_gaus) ldm_gaus = project_eigenvectors(ldm_gaus) return ldm_gaus