import gradio as gr import pandas as pd from pathlib import Path import logging from datetime import datetime import sys import uuid from typing import Dict, Any import numpy as np # Add parent directory to path to import main sys.path.append(str(Path(__file__).parent)) from main import ( StorageManager, EvaluationRequest, evaluate_model, PATHS ) logging.basicConfig(level=logging.INFO) # Initialize storage manager storage_manager = StorageManager(PATHS) def load_leaderboard_data(): try: return pd.DataFrame(storage_manager.load('leaderboard')) except Exception as e: logging.error(f"Error loading leaderboard: {e}") return pd.DataFrame() def format_leaderboard_df(df, sort_by="pwed"): if df.empty: return df # Sort the original dataframe first sort_column = "average_per" if sort_by.lower() == "per" else "average_pwed" df = df.sort_values(by=sort_column, ascending=True) # Ascending=True means smaller values at top # Then create display dataframe from the sorted data display_df = pd.DataFrame({ "Model": df["model"], "Average PER ⬇️": df["average_per"].apply(lambda x: f"{x:.4f}"), "Average PWED ⬇️": df["average_pwed"].apply(lambda x: f"{x:.4f}"), "Link": df["github_url"].apply(lambda x: f'Repository' if x else "N/A"), "Submission Date": pd.to_datetime(df["submission_date"]).dt.strftime("%Y-%m-%d") }) return display_df def create_html_table(df): return df.to_html(escape=False, index=False, classes="styled-table") def update_leaderboard(sort_option: str) -> str: try: df = load_leaderboard_data() formatted_df = format_leaderboard_df(df, sort_option.lower()) return create_html_table(formatted_df) except Exception as e: logging.error(f"Error updating leaderboard: {e}") return "Error updating leaderboard" def submit_evaluation(model_name: str, submission_name: str, github_url: str) -> str: if not model_name or not submission_name: return "⚠️ Please provide both model name and submission name." try: # Generate a task ID task_id = str(uuid.uuid4()) # Create evaluation request request = EvaluationRequest( transcription_model=model_name, submission_name=submission_name, github_url=github_url if github_url else None, subset="test" ) # Create task entry task = { "id": task_id, "model": model_name, "subset": "test", "submission_name": submission_name, "github_url": github_url, "status": "queued", "submitted_at": datetime.now().isoformat() } # Save task tasks = storage_manager.load('tasks') tasks.append(task) storage_manager.save('tasks', tasks) # Start evaluation in background import asyncio asyncio.run(evaluate_model(task_id, request)) return f"✅ Evaluation submitted successfully! Task ID: {task_id}" except Exception as e: return f"❌ Error: {str(e)}" def check_status(query: str) -> Dict[str, Any]: if not query: return {"error": "Please enter a model name or task ID"} try: results = storage_manager.load('results') tasks = storage_manager.load('tasks') # First try to find by task ID result = next((r for r in results if r["task_id"] == query), None) task = next((t for t in tasks if t["id"] == query), None) # If not found, try to find by model name if not result: result = next((r for r in results if r["model"] == query), None) if not task: task = next((t for t in tasks if t["model"] == query), None) if result: # If we found results, return them return { "status": "completed", "model": result["model"], "subset": result["subset"], "num_files": result["num_files"], "average_per": result["average_per"], "average_pwed": result["average_pwed"], "detailed_results": result["detailed_results"], "timestamp": result["timestamp"] } elif task: # If we only found task status, return that return task else: return {"error": f"No results found for '{query}'"} except Exception as e: logging.error(f"Error checking status: {e}") return {"error": f"Error checking status: {str(e)}"} with gr.Blocks(css=""" .styled-table { width: 100%; border-collapse: collapse; margin: 25px 0; font-size: 0.9em; font-family: sans-serif; box-shadow: 0 0 20px rgba(0, 0, 0, 0.15); } .styled-table thead tr { background: linear-gradient(45deg, #092746, #073562, #0A648F); color: #ffffff; text-align: left; } .styled-table th, .styled-table td { padding: 12px 15px; } .styled-table tbody tr { border-bottom: 1px solid #dddddd; } """) as demo: gr.Markdown("# 🎯 Phonemic Transcription Leaderboard") gr.Markdown("#### Developed By: Koel Labs") gr.Markdown(""" ## Explanation of Metrics - **PER (Phoneme Error Rate)**: The Levenshtein distance calculated between phoneme sequences of the predicted and actual transcriptions. - **PWED (Phoneme Weighted Edit Distance)**: Edit distance between the predicted and actual phoneme sequences, weighted by the phonemic feature distance. Method provided by [panphon library](https://github.com/dmort27/panphon) """) gr.Markdown(""" ## Test Set Information The test set used for evaluation is from the [TIMIT speech corpus](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech). The TIMIT corpus is a widely used dataset for speech recognition research. ## Compute This leaderboard uses the free basic plan (16GB RAM, 2vCPUs) to allow for reproducability. The evaluation may take several hours to complete. Please be patient and do not submit the same model multiple times. """) with gr.Tabs(): with gr.TabItem("🏆 Leaderboard"): with gr.Row(elem_classes="controls-row"): # Controls side by side sort_dropdown = gr.Dropdown( choices=["PWED", "PER"], value="PWED", interactive=True, scale=2, container=False, # Removes the box around the dropdown label=None # Removes the "Sort by" label ) refresh_btn = gr.Button("Refresh 🔄", scale=2) # Simplified button text leaderboard_html = gr.HTML(create_html_table(format_leaderboard_df(load_leaderboard_data()))) sort_dropdown.change( fn=update_leaderboard, inputs=[sort_dropdown], outputs=leaderboard_html ) refresh_btn.click( fn=update_leaderboard, inputs=[sort_dropdown], outputs=leaderboard_html ) with gr.TabItem("📝 Submit Model"): model_name = gr.Textbox(label="Model Name", placeholder="facebook/wav2vec2-lv-60-espeak-cv-ft") submission_name = gr.Textbox(label="Submission Name", placeholder="My Model v1.0") github_url = gr.Textbox(label="Github/Kaggle/HF URL (optional)", placeholder="https://github.com/username/repo") submit_btn = gr.Button("Submit") result = gr.Textbox(label="Submission Status") submit_btn.click( fn=submit_evaluation, inputs=[model_name, submission_name, github_url], outputs=result ) with gr.TabItem("📊 Model Status"): query = gr.Textbox(label="Model Name or Task ID", placeholder="Enter model name (e.g., facebook/wav2vec2-lv-60-espeak-cv-ft)") status_btn = gr.Button("Check Status") status_output = gr.JSON(label="Status") status_btn.click( fn=check_status, inputs=query, outputs=status_output ) if __name__ == "__main__": demo.launch()