from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig from scipy.special import softmax import gradio as gr import numpy as np from scipy.special import softmax # Requirements model_path = f"avichr/heBERT_sentiment_analysis" tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') config = AutoConfig.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def sentiment_analysis(text): text = preprocess(text) # PyTorch-based models encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores_ = output[0][0].detach().numpy() scores_ = softmax(scores_) # Format output dict of scores labels = ['Negative', 'Neutral', 'Positive'] scores = {l:float(s) for (l,s) in zip(labels, scores_) } return scores demo = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(placeholder="Write how you feel about Covid here..."), outputs="text", examples=[["Whats up with the Vaccine"]] title = "Tutorial: Sentiment Analysis App" description = "This App assess if a sentiment about Covid is positive or negative") demo.launch()