import os import gradio as gr import cv2 import subprocess from utils import get_mediapipe_pose from process_frame import ProcessFrame from thresholds import get_thresholds_beginner, get_thresholds_pro sample_video = os.path.join(os.path.dirname(__file__), "samples/sample-squats.mp4") # Initialize face mesh solution POSE = get_mediapipe_pose() def process_video(video_path, mode="Beginner"): output_video_file = f"output_recorded.mp4" if mode == 'Beginner': thresholds = get_thresholds_beginner() elif mode == 'Pro': thresholds = get_thresholds_pro() upload_process_frame = ProcessFrame(thresholds=thresholds) vf = cv2.VideoCapture(video_path) fps = int(vf.get(cv2.CAP_PROP_FPS)) width = int(vf.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vf.get(cv2.CAP_PROP_FRAME_HEIGHT)) frame_size = (width, height) fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_output = cv2.VideoWriter(output_video_file, fourcc, fps, frame_size) count = 0 while vf.isOpened(): ret, frame = vf.read() if not ret: break # convert frame from BGR to RGB before processing it. frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) out_frame, _ = upload_process_frame.process(frame, POSE) video_output.write(cv2.cvtColor(out_frame, cv2.COLOR_RGB2BGR)) if not count%12: yield out_frame, None count+=1 vf.release() video_output.release() # convertedVideo = f"output_h264.mp4" # subprocess.call(args=f"ffmpeg -y -i {output_video_file} -c:v libx264 {convertedVideo}".split(" ")) yield None, output_video_file input_video = gr.Video(label="Input Video") webcam_video = gr.Video(source="webcam", label="Input Video") output_frames_up = gr.Image(label="Output Frames") output_video_file_up = gr.Video(label="Output video") output_frames_cam = gr.Image(label="Output Frames") output_video_file_cam = gr.Video(label="Output video") upload_interface = gr.Interface( fn=process_video, inputs=[input_video, gr.Radio(choices=["Beginner", "Pro"], label="Select Mode")], outputs=[output_frames_up, output_video_file_up], title=f"AI Fitness Trainer: Squats Analysis", allow_flagging="never", examples=[[sample_video]] ) webcam_interface = gr.Interface( fn=process_video, inputs=[webcam_video, gr.Radio(choices=["Beginner", "Pro"], label="Select Mode")], outputs=[output_frames_cam, output_video_file_cam], title=f"AI Fitness Trainer: Squats Analysis", allow_flagging="never" ) app = gr.TabbedInterface([upload_interface, webcam_interface], tab_names=["⬆️ Upload Video", "📷️ Live Stream"]) app.queue().launch()