import math from einops import rearrange import decord from torch.nn import functional as F import torch IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) class DecordInit(object): """Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" def __init__(self, num_threads=1): self.num_threads = num_threads self.ctx = decord.cpu(0) def __call__(self, filename): """Perform the Decord initialization. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ reader = decord.VideoReader(filename, ctx=self.ctx, num_threads=self.num_threads) return reader def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'sr={self.sr},' f'num_threads={self.num_threads})') return repr_str def pad_to_multiple(number, ds_stride): remainder = number % ds_stride if remainder == 0: return number else: padding = ds_stride - remainder return number + padding class Collate: def __init__(self, args): self.max_image_size = args.max_image_size self.ae_stride = args.ae_stride self.ae_stride_t = args.ae_stride_t self.ae_stride_thw = (self.ae_stride_t, self.ae_stride, self.ae_stride) self.ae_stride_1hw = (1, self.ae_stride, self.ae_stride) self.patch_size = args.patch_size self.patch_size_t = args.patch_size_t self.patch_size_thw = (self.patch_size_t, self.patch_size, self.patch_size) self.patch_size_1hw = (1, self.patch_size, self.patch_size) self.num_frames = args.num_frames self.use_image_num = args.use_image_num self.max_thw = (self.num_frames, self.max_image_size, self.max_image_size) self.max_1hw = (1, self.max_image_size, self.max_image_size) def package(self, batch): # import ipdb;ipdb.set_trace() batch_tubes_vid = [i['video_data']['video'] for i in batch] # b [c t h w] input_ids_vid = torch.stack([i['video_data']['input_ids'] for i in batch]) # b 1 l cond_mask_vid = torch.stack([i['video_data']['cond_mask'] for i in batch]) # b 1 l batch_tubes_img, input_ids_img, cond_mask_img = None, None, None if self.use_image_num != 0: batch_tubes_img = [j for i in batch for j in i['image_data']['image']] # b*num_img [c 1 h w] input_ids_img = torch.stack([i['image_data']['input_ids'] for i in batch]) # b image_num l cond_mask_img = torch.stack([i['image_data']['cond_mask'] for i in batch]) # b image_num l return batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img def __call__(self, batch): batch_tubes_vid, input_ids_vid, cond_mask_vid, batch_tubes_img, input_ids_img, cond_mask_img = self.package(batch) # import ipdb;ipdb.set_trace() ds_stride = self.ae_stride * self.patch_size t_ds_stride = self.ae_stride_t * self.patch_size_t if self.use_image_num == 0: pad_batch_tubes, attention_mask = self.process(batch_tubes_vid, t_ds_stride, ds_stride, self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) # attention_mask: b t h w input_ids, cond_mask = input_ids_vid.squeeze(1), cond_mask_vid.squeeze(1) # b 1 l -> b l else: pad_batch_tubes_vid, attention_mask_vid = self.process(batch_tubes_vid, t_ds_stride, ds_stride, self.max_thw, self.ae_stride_thw, self.patch_size_thw, extra_1=True) # attention_mask_vid: b t h w pad_batch_tubes_img, attention_mask_img = self.process(batch_tubes_img, 1, ds_stride, self.max_1hw, self.ae_stride_1hw, self.patch_size_1hw, extra_1=False) pad_batch_tubes_img = rearrange(pad_batch_tubes_img, '(b i) c 1 h w -> b c i h w', i=self.use_image_num) attention_mask_img = rearrange(attention_mask_img, '(b i) 1 h w -> b i h w', i=self.use_image_num) pad_batch_tubes = torch.cat([pad_batch_tubes_vid, pad_batch_tubes_img], dim=2) # concat at temporal, video first # attention_mask_img: b num_img h w attention_mask = torch.cat([attention_mask_vid, attention_mask_img], dim=1) # b t+num_img h w input_ids = torch.cat([input_ids_vid, input_ids_img], dim=1) # b 1+num_img hw cond_mask = torch.cat([cond_mask_vid, cond_mask_img], dim=1) # b 1+num_img hw return pad_batch_tubes, attention_mask, input_ids, cond_mask def process(self, batch_tubes, t_ds_stride, ds_stride, max_thw, ae_stride_thw, patch_size_thw, extra_1): # pad to max multiple of ds_stride batch_input_size = [i.shape for i in batch_tubes] # [(c t h w), (c t h w)] max_t, max_h, max_w = max_thw pad_max_t, pad_max_h, pad_max_w = pad_to_multiple(max_t-1 if extra_1 else max_t, t_ds_stride), \ pad_to_multiple(max_h, ds_stride), \ pad_to_multiple(max_w, ds_stride) pad_max_t = pad_max_t + 1 if extra_1 else pad_max_t each_pad_t_h_w = [[pad_max_t - i.shape[1], pad_max_h - i.shape[2], pad_max_w - i.shape[3]] for i in batch_tubes] pad_batch_tubes = [F.pad(im, (0, pad_w, 0, pad_h, 0, pad_t), value=0) for (pad_t, pad_h, pad_w), im in zip(each_pad_t_h_w, batch_tubes)] pad_batch_tubes = torch.stack(pad_batch_tubes, dim=0) # make attention_mask # first_channel_first_frame, first_channel_other_frame = pad_batch_tubes[:, :1, :1], pad_batch_tubes[:, :1, 1:] # first channel to make attention_mask # attention_mask_first_frame = F.max_pool3d(first_channel_first_frame, kernel_size=(1, *ae_stride_thw[1:]), stride=(1, *ae_stride_thw[1:])) # if first_channel_other_frame.numel() != 0: # attention_mask_other_frame = F.max_pool3d(first_channel_other_frame, kernel_size=ae_stride_thw, stride=ae_stride_thw) # attention_mask = torch.cat([attention_mask_first_frame, attention_mask_other_frame], dim=2) # else: # attention_mask = attention_mask_first_frame # attention_mask_ = attention_mask[:, 0].bool().float() # b t h w, do not channel # import ipdb;ipdb.set_trace() max_tube_size = [pad_max_t, pad_max_h, pad_max_w] max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]), max_tube_size[1] // ae_stride_thw[1], max_tube_size[2] // ae_stride_thw[2]] valid_latent_size = [[int(math.ceil((i[1]-1) / ae_stride_thw[0])) + 1 if extra_1 else int(math.ceil(i[1] / ae_stride_thw[0])), int(math.ceil(i[2] / ae_stride_thw[1])), int(math.ceil(i[3] / ae_stride_thw[2]))] for i in batch_input_size] attention_mask = [F.pad(torch.ones(i), (0, max_latent_size[2] - i[2], 0, max_latent_size[1] - i[1], 0, max_latent_size[0] - i[0]), value=0) for i in valid_latent_size] attention_mask = torch.stack(attention_mask) # b t h w # max_tube_size = [pad_max_t, pad_max_h, pad_max_w] # max_latent_size = [((max_tube_size[0]-1) // ae_stride_thw[0] + 1) if extra_1 else (max_tube_size[0] // ae_stride_thw[0]), # max_tube_size[1] // ae_stride_thw[1], # max_tube_size[2] // ae_stride_thw[2]] # max_patchify_latent_size = [((max_latent_size[0]-1) // patch_size_thw[0] + 1) if extra_1 else (max_latent_size[0] // patch_size_thw[0]), # max_latent_size[1] // patch_size_thw[1], # max_latent_size[2] // patch_size_thw[2]] # valid_patchify_latent_size = [[int(math.ceil((i[1]-1) / t_ds_stride)) + 1 if extra_1 else int(math.ceil(i[1] / t_ds_stride)), # int(math.ceil(i[2] / ds_stride)), # int(math.ceil(i[3] / ds_stride))] for i in batch_input_size] # attention_mask = [F.pad(torch.ones(i), # (0, max_patchify_latent_size[2] - i[2], # 0, max_patchify_latent_size[1] - i[1], # 0, max_patchify_latent_size[0] - i[0]), value=0) for i in valid_patchify_latent_size] # attention_mask = torch.stack(attention_mask) # b t h w return pad_batch_tubes, attention_mask