# import streamlit as st # from transformers import pipeline # # Load the SQLCoder model # sql_generator = pipeline('text-generation', model='defog/sqlcoder') # st.title('SQL Table Extractor') # # Text input for SQL query # user_sql = st.text_input("Enter your SQL statement", "SELECT * FROM my_table WHERE condition;") # # Button to parse SQL # if st.button('Extract Tables'): # # Generate SQL or parse directly # results = sql_generator(user_sql) # # Assuming results contain SQL, extract table names (this part may require custom logic based on output) # tables = extract_tables_from_sql(results) # # Display extracted table names # st.write('Extracted Tables:', tables) # def extract_tables_from_sql(sql): # # Dummy function: Implement logic to parse table names from SQL # return ["my_table"] # Example output import streamlit as st from transformers import pipeline # Load the NER model ner = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", grouped_entities=True) st.title('Hello World NER Parser') # User input for text user_input = st.text_area("Enter a sentence to parse for named entities:", "John Smith lives in San Francisco.") # Parse entities if st.button('Parse'): entities = ner(user_input) # Display extracted entities for entity in entities: st.write(f"Entity: {entity['word']}, Entity Type: {entity['entity_group']}")