import gc import os from typing import * import torch from .models import BaseModel from .utilities import ( build_engine, export_onnx, handle_onnx_batch_norm, optimize_onnx, ) class EngineBuilder: def __init__( self, model: BaseModel, network: Any, device=torch.device("cuda"), ): self.device = device self.model = model self.network = network def build( self, onnx_path: str, onnx_opt_path: str, engine_path: str, opt_image_height: int = 512, opt_image_width: int = 512, opt_batch_size: int = 1, min_image_resolution: int = 256, max_image_resolution: int = 1024, build_enable_refit: bool = False, build_static_batch: bool = False, build_dynamic_shape: bool = False, build_all_tactics: bool = False, onnx_opset: int = 17, force_engine_build: bool = False, force_onnx_export: bool = False, force_onnx_optimize: bool = False, ignore_onnx_optimize: bool = False, auto_cast: bool = True, handle_batch_norm: bool = False, ): if not force_onnx_export and os.path.exists(onnx_path): print(f"Found cached model: {onnx_path}") else: print(f"Exporting model: {onnx_path}") export_onnx( self.network, onnx_path=onnx_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width, opt_batch_size=opt_batch_size, onnx_opset=onnx_opset, auto_cast=auto_cast, ) del self.network gc.collect() torch.cuda.empty_cache() if handle_batch_norm: print(f"Handle Batch Norm for {onnx_path}") handle_onnx_batch_norm(onnx_path) if ignore_onnx_optimize: print(f"Ignore onnx optimize for {onnx_path}.") onnx_opt_path = onnx_path elif not force_onnx_optimize and os.path.exists(onnx_opt_path): print(f"Found cached model: {onnx_opt_path}") else: print(f"Generating optimizing model: {onnx_opt_path}") optimize_onnx( onnx_path=onnx_path, onnx_opt_path=onnx_opt_path, model_data=self.model, ) self.model.min_latent_shape = min_image_resolution // 8 self.model.max_latent_shape = max_image_resolution // 8 if not force_engine_build and os.path.exists(engine_path): print(f"Found cached engine: {engine_path}") else: build_engine( engine_path=engine_path, onnx_opt_path=onnx_opt_path, model_data=self.model, opt_image_height=opt_image_height, opt_image_width=opt_image_width, opt_batch_size=opt_batch_size, build_static_batch=build_static_batch, build_dynamic_shape=build_dynamic_shape, build_all_tactics=build_all_tactics, build_enable_refit=build_enable_refit, ) gc.collect() torch.cuda.empty_cache()