# -------------------------------------------------------- # SEEM -- Segment Everything Everywhere All at Once # Licensed under The Apache License 2.0 [see LICENSE for details] # Written by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- import logging from typing import Optional import torch from torch import nn, Tensor from torch.nn import functional as F from timm.models.layers import trunc_normal_ from detectron2.layers import Conv2d import fvcore.nn.weight_init as weight_init from .build import register_decoder from .modules import SelfAttentionLayer, CrossAttentionLayer, FFNLayer, MLP from .prototype.attention_data_struct_seemv1 import AttentionDataStruct from ..utils import rand_sample, prepare_features, configurable from ..modules import PositionEmbeddingSine from ..modules.point_features import point_sample class SEEMDecoder(nn.Module): @configurable def __init__( self, lang_encoder: nn.Module, in_channels, mask_classification=True, *, hidden_dim: int, dim_proj: int, num_queries: int, contxt_len: int, nheads: int, dim_feedforward: int, dec_layers: int, pre_norm: bool, mask_dim: int, task_switch: dict, enforce_input_project: bool, max_spatial_len: int, attn_arch: dict, ): """ NOTE: this interface is experimental. Args: in_channels: channels of the input features mask_classification: whether to add mask classifier or not num_classes: number of classes hidden_dim: Transformer feature dimension num_queries: number of queries nheads: number of heads dim_feedforward: feature dimension in feedforward network enc_layers: number of Transformer encoder layers dec_layers: number of Transformer decoder layers pre_norm: whether to use pre-LayerNorm or not mask_dim: mask feature dimension enforce_input_project: add input project 1x1 conv even if input channels and hidden dim is identical """ super().__init__() assert mask_classification, "Only support mask classification model" self.mask_classification = mask_classification # positional encoding N_steps = hidden_dim // 2 self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True) # define Transformer decoder here self.num_heads = nheads self.num_layers = dec_layers self.contxt_len = contxt_len self.transformer_self_attention_layers = nn.ModuleList() self.transformer_cross_attention_layers = nn.ModuleList() self.transformer_ffn_layers = nn.ModuleList() for _ in range(self.num_layers): self.transformer_self_attention_layers.append( SelfAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_cross_attention_layers.append( CrossAttentionLayer( d_model=hidden_dim, nhead=nheads, dropout=0.0, normalize_before=pre_norm, ) ) self.transformer_ffn_layers.append( FFNLayer( d_model=hidden_dim, dim_feedforward=dim_feedforward, dropout=0.0, normalize_before=pre_norm, ) ) self.decoder_norm = nn.LayerNorm(hidden_dim) self.num_queries = num_queries # learnable query features self.query_feat = nn.Embedding(num_queries, hidden_dim) # learnable query p.e. self.query_embed = nn.Embedding(num_queries, hidden_dim) # level embedding (we always use 3 scales) self.num_feature_levels = 3 self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) self.input_proj = nn.ModuleList() for _ in range(self.num_feature_levels): if in_channels != hidden_dim or enforce_input_project: self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1)) weight_init.c2_xavier_fill(self.input_proj[-1]) else: self.input_proj.append(nn.Sequential()) self.task_switch = task_switch self.query_index = {} # output FFNs self.lang_encoder = lang_encoder self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3) self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj)) trunc_normal_(self.class_embed, std=.02) if task_switch['bbox']: self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) if task_switch['spatial']: # spatial query self.mask_sptial_embed = nn.ParameterList([nn.Parameter(torch.empty(hidden_dim, hidden_dim)) for x in range(3)]) trunc_normal_(self.mask_sptial_embed[0], std=.02) trunc_normal_(self.mask_sptial_embed[1], std=.02) trunc_normal_(self.mask_sptial_embed[2], std=.02) self.max_spatial_len = max_spatial_len # spatial memory num_spatial_memories = attn_arch['SPATIAL_MEMORIES'] self.spatial_embed = nn.Embedding(num_spatial_memories, hidden_dim) self.spatial_featured = nn.Embedding(num_spatial_memories, hidden_dim) # learnable positive negative indicator self.pn_indicator = nn.Embedding(2, hidden_dim) # build AttentionDataStruct attn_arch['NUM_LAYERS'] = self.num_layers self.attention_data = AttentionDataStruct(attn_arch, task_switch) self.sample_size = attn_arch['QUERY_NUMBER'] @classmethod def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra): ret = {} ret["lang_encoder"] = lang_encoder ret["in_channels"] = in_channels ret["mask_classification"] = mask_classification enc_cfg = cfg['MODEL']['ENCODER'] dec_cfg = cfg['MODEL']['DECODER'] ret["hidden_dim"] = dec_cfg['HIDDEN_DIM'] ret["dim_proj"] = cfg['MODEL']['DIM_PROJ'] ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES'] ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] # Transformer parameters: ret["nheads"] = dec_cfg['NHEADS'] ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD'] # NOTE: because we add learnable query features which requires supervision, # we add minus 1 to decoder layers to be consistent with our loss # implementation: that is, number of auxiliary losses is always # equal to number of decoder layers. With learnable query features, the number of # auxiliary losses equals number of decoders plus 1. assert dec_cfg['DEC_LAYERS'] >= 1 ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1 ret["pre_norm"] = dec_cfg['PRE_NORM'] ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ'] ret["mask_dim"] = enc_cfg['MASK_DIM'] ret["task_switch"] = extra['task_switch'] ret["max_spatial_len"] = dec_cfg['MAX_SPATIAL_LEN'] # attn data struct ret["attn_arch"] = cfg['ATTENTION_ARCH'] return ret def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}): # x is a list of multi-scale feature assert len(x) == self.num_feature_levels; del mask spatial_extra_flag = 'spatial_query_pos_mask' in extra.keys() or task == 'refimg' or 'refimg_tokens' in extra grounding_extra_flag = 'grounding_tokens' in extra.keys() spatial_memory_flag = 'prev_mask' in extra.keys() flags = {"spatial": spatial_extra_flag, "grounding": grounding_extra_flag, "memories_spatial": spatial_memory_flag} self.attention_data.reset(flags, task, extra) src, pos, size_list = prepare_features(x, self.num_feature_levels, self.pe_layer, self.input_proj, self.level_embed) _,bs,_ = src[0].shape # QxNxC query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1) output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1) self.attention_data.set('queries_object', 'queries', output, query_embed) if self.task_switch['spatial'] and spatial_extra_flag: if 'refimg_tokens' not in extra: # get divisor c,h,w = extra['spatial_query_pos_mask'][0].shape divisor = torch.tensor([1,h,w], device=output.device)[None,] # Get mean pos spatial query non_zero_pos_point = [rand_sample(m, divisor, self.max_spatial_len[-1]).t() for m in extra['spatial_query_pos_mask']] non_zero_pos_index = [m[:,0:1].long() for m in non_zero_pos_point] non_zero_pos_point = nn.utils.rnn.pad_sequence(non_zero_pos_point, padding_value=-1).permute(1,0,2) non_zero_pos_index = nn.utils.rnn.pad_sequence(non_zero_pos_index, padding_value=-1).permute(1,0,2)[:,:,0] non_zero_pos_mask = (non_zero_pos_point.sum(dim=-1) < 0) spatial_query_pos = point_sample(mask_features, non_zero_pos_point[:,:,1:].flip(dims=(2,)).type(mask_features.dtype), align_corners=True) num_mask_per_batch = [len(m) for m in extra['spatial_query_pos_mask']] spatial_query_pos = nn.utils.rnn.pad_sequence([torch.stack([x[ns==n].mean(dim=0, keepdim=False) if (ns==n).sum() > 0 else -torch.ones((x.shape[1]), device=spatial_query_pos.device) for n in range(mb)]) for x, m, ns, mb in zip(spatial_query_pos.transpose(1,2), ~non_zero_pos_mask, non_zero_pos_index, num_mask_per_batch)], padding_value=-1).nan_to_num() # Get mean neg spatial query non_zero_neg_point = [rand_sample(m, divisor, self.max_spatial_len[-1]).t() for m in extra['spatial_query_neg_mask']] non_zero_neg_index = [m[:,0:1].long() for m in non_zero_neg_point] non_zero_neg_point = nn.utils.rnn.pad_sequence(non_zero_neg_point, padding_value=-1).permute(1,0,2) non_zero_neg_index = nn.utils.rnn.pad_sequence(non_zero_neg_index, padding_value=-1).permute(1,0,2)[:,:,0] non_zero_neg_mask = (non_zero_neg_point.sum(dim=-1) < 0) spatial_query_neg = point_sample(mask_features, non_zero_neg_point[:,:,1:].flip(dims=(2,)).type(mask_features.dtype), align_corners=True) num_mask_per_batch = [len(m) for m in extra['spatial_query_neg_mask']] spatial_query_neg = nn.utils.rnn.pad_sequence([torch.stack([x[ns==n].mean(dim=0, keepdim=False) if (ns==n).sum() > 0 else -torch.ones((x.shape[1]), device=spatial_query_neg.device) for n in range(mb)]) for x, m, ns, mb in zip(spatial_query_neg.transpose(1,2), ~non_zero_neg_mask, non_zero_neg_index, num_mask_per_batch)], padding_value=-1).nan_to_num() # Get layerwise spatial query src_spatial_queries = [] src_spatial_maskings = [] src_spatial_indices = [] for i in range(len(src)): hw,_,dc = src[i].shape src_mask_features = src[i].view(size_list[i][0],size_list[i][1],bs,dc) src_mask_features = src_mask_features @ self.mask_sptial_embed[i] non_zero_query_point_pos = [rand_sample(m, divisor, self.max_spatial_len[i]).t() for m in extra['spatial_query_pos_mask']] non_zero_query_point_neg = [rand_sample(m, divisor, self.max_spatial_len[i]).t() for m in extra['spatial_query_neg_mask']] non_zero_query_point = [torch.cat([x[:,1:],y[:,1:]], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] non_zero_query_index = [torch.cat([x[:,0:1],y[:,0:1]], dim=0) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] pos_neg_indicator = [torch.cat([torch.ones(x.shape[0], device=x.device), -torch.ones(y.shape[0], device=y.device)]) for x,y in zip(non_zero_query_point_pos, non_zero_query_point_neg)] pos_neg_indicator = nn.utils.rnn.pad_sequence(pos_neg_indicator, padding_value=0) non_zero_query_point = nn.utils.rnn.pad_sequence(non_zero_query_point, padding_value=-1).permute(1,0,2) non_zero_query_index = nn.utils.rnn.pad_sequence(non_zero_query_index, padding_value=-1).permute(1,0,2) non_zero_query_mask = (non_zero_query_point.sum(dim=-1) < 0) non_zero_query_point[non_zero_query_mask] = 0 spatial_tokens = point_sample(src_mask_features.permute(2,3,0,1), non_zero_query_point.flip(dims=(2,)).type(src_mask_features.dtype), align_corners=True).permute(2,0,1) spatial_tokens[pos_neg_indicator==1] += self.pn_indicator.weight[0:1] spatial_tokens[pos_neg_indicator==-1] += self.pn_indicator.weight[1:2] src_spatial_queries += [spatial_tokens] src_spatial_maskings += [non_zero_query_mask] src_spatial_indices += [non_zero_query_index] if 'refimg' in task: output_refimg = {} output_refimg['spatial_query_pos'] = spatial_query_pos output_refimg['spatial_query_neg'] = spatial_query_neg output_refimg['src_spatial_queries'] = src_spatial_queries output_refimg['src_spatial_maskings'] = src_spatial_maskings return output_refimg else: spatial_query_pos = extra['refimg_tokens']['spatial_query_pos'] spatial_query_neg = extra['refimg_tokens']['spatial_query_neg'] src_spatial_queries = extra['refimg_tokens']['src_spatial_queries'] src_spatial_maskings = extra['refimg_tokens']['src_spatial_maskings'] # Get object query for spatial index self.attention_data.set_extra({"spatial_query_number": len(spatial_query_pos), "sample_size": self.sample_size}) self.attention_data.set('queries_spatial', 'queries', sample_size=self.sample_size*len(spatial_query_pos)) # set spatial memory spatial_output = self.spatial_featured.weight.unsqueeze(1).repeat(1, bs, 1) spatial_embed = self.spatial_embed.weight.unsqueeze(1).repeat(1, bs, 1) self.attention_data.set('memories_spatial', 'memories', spatial_output, spatial_embed) if self.task_switch['grounding'] and grounding_extra_flag: # Get grounding tokens grounding_tokens = extra['grounding_tokens'] _grounding_tokens = grounding_tokens.detach().clone() self.attention_data.set('tokens_grounding', 'tokens', grounding_tokens, _grounding_tokens) self.attention_data.set('queries_grounding', 'queries') self.attention_data.set_maskings('tokens_grounding', extra['grounding_nonzero_mask']) output, query_embed = self.attention_data.cross_attn_variables() # prediction heads on learnable query features results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0]) results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None self.attention_data.set_results(results) for i in range(self.num_layers): level_index = i % self.num_feature_levels # CROSS ATTENTION output, avg_attn = self.transformer_cross_attention_layers[i]( output, src[level_index], memory_mask=self.attention_data.cross_attn_mask(size_list[level_index], self.num_heads), memory_key_padding_mask=None, # here we do not apply masking on padded region pos=pos[level_index], query_pos=query_embed ) self.attention_data.update_variables(output, 'cross_attn') # SELF ATTENTION self_attn_mask = torch.zeros((bs, self.num_queries, self.num_queries), device=query_embed.device).bool() # Default False (attend oq) if self.task_switch['spatial'] and spatial_extra_flag: # get spatial tokens spatial_tokens = src_spatial_queries[level_index] _spatial_tokens = spatial_tokens.detach().clone() self.attention_data.set('tokens_spatial', 'tokens', spatial_tokens, _spatial_tokens) self.attention_data.set_maskings('tokens_spatial', src_spatial_maskings[level_index]) self.attention_data.set_extra({"spatial_indices": src_spatial_indices[level_index]}) output, query_embed, self_attn_mask = self.attention_data.self_attn(bs, self.num_heads) output = self.transformer_self_attention_layers[i]( output, tgt_mask=self_attn_mask, tgt_key_padding_mask=None, query_pos=query_embed) # FFN output = self.transformer_ffn_layers[i]( output ) self.attention_data.update_variables(output, 'self_attn') output, query_embed = self.attention_data.cross_attn_variables() results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i) results["predictions_pos_spatial"] = spatial_query_pos.transpose(0,1) if spatial_extra_flag else None results["predictions_neg_spatial"] = spatial_query_neg.transpose(0,1) if spatial_extra_flag else None self.attention_data.set_results(results) return self.attention_data.organize_output() def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1): decoder_output = self.decoder_norm(output) decoder_output = decoder_output.transpose(0, 1) class_embed = decoder_output @ self.class_embed outputs_class = self.lang_encoder.compute_similarity(class_embed) mask_embed = self.mask_embed(decoder_output) outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) outputs_bbox = [None for i in range(len(outputs_mask))] if self.task_switch['bbox']: outputs_bbox = self.bbox_embed(decoder_output) # NOTE: prediction is of higher-resolution # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW] attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False) # must use bool type # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool() attn_mask = attn_mask.detach() outputs_caption = class_embed results = { "attn_mask": attn_mask, "predictions_class": outputs_class, "predictions_mask": outputs_mask, "predictions_bbox": outputs_bbox, "predictions_caption": outputs_caption, "predictions_maskemb": mask_embed, } return results @register_decoder def get_seem_interface(cfg, in_channels, lang_encoder, mask_classification, extra): return SEEMDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)