# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- # Copyright (c) Facebook, Inc. and its affiliates. import os import numpy as np import itertools import logging from typing import Any, Callable, Dict, List, Optional, Union import torch import torch.utils.data import torch.utils.data as torchdata import detectron2.utils.comm as comm from detectron2.data.build import ( build_batch_data_loader, load_proposals_into_dataset, trivial_batch_collator, ) from detectron2.data import MetadataCatalog from detectron2.data.catalog import DatasetCatalog from detectron2.data.common import DatasetFromList, MapDataset from detectron2.data.dataset_mapper import DatasetMapper from detectron2.data.samplers import InferenceSampler, TrainingSampler from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, DatasetEvaluators, LVISEvaluator, verify_results, ) from fvcore.common.config import CfgNode from .dataset_mappers import * from .evaluation import (InstanceSegEvaluator, ClassificationEvaluator, SemSegEvaluator, RetrievalEvaluator, #CaptioningEvaluator, COCOPanopticEvaluator, GroundingEvaluator, InteractiveEvaluator, ) from modeling.utils import configurable from utilities.distributed import get_world_size class JointLoader(torchdata.IterableDataset): """ Randomly sampple from one of the dataloaders per worker in each iteration. The sampling probability is determined by the size of each dataset. All examples from one worker (GPU) are from the same dataset in the iteration. Mixing is achieved through multiple workers (GPUs). """ def __init__(self, loaders, key_dataset, sample_prob, mixing_level): dataset_names = [] for key, loader in loaders.items(): name = "{}".format(key.split('_')[0]) setattr(self, name, loader) dataset_names += [name] self.dataset_names = dataset_names self.key_dataset = key_dataset if sample_prob == 'prop': self.sample_prob = [len(getattr(self, key)) for key in self.dataset_names] elif sample_prob == 'equal': self.sample_prob = [1 for key in self.dataset_names] elif sample_prob == 'sqrt': self.sample_prob = [np.sqrt(len(getattr(self, key))) for key in self.dataset_names] self.sample_prob = [p/sum(self.sample_prob) for p in self.sample_prob] self.mixing_level = mixing_level # Not sure how expensive `len(getattr(self, name))` is. computing this once and cache. # this assumes the len of the underlying data loaders do not change. self._len = sum(len(getattr(self, name)) for name in self.dataset_names) def __iter__(self): # Reset iterators at the start of each new epoch self.iterators = {name: iter(getattr(self, name)) for name in self.dataset_names} self._count = 0 return self def __next__(self): while self._count < self._len: # Randomly select a dataloader name = np.random.choice(self.dataset_names, size=None, replace=False, p=self.sample_prob) iterator = self.iterators[name] try: # Get next batch from the selected dataloader self._count += 1 return next(iterator) except StopIteration: # If the selected dataloader is exhausted, reinitialize it self.iterators[name] = iter(getattr(self, name)) raise StopIteration def __len__(self): return self._len def filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names): """ Filter out images with none annotations or only crowd annotations (i.e., images without non-crowd annotations). A common training-time preprocessing on COCO dataset. Args: dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. Returns: list[dict]: the same format, but filtered. """ num_before = len(dataset_dicts) def valid(anns): for ann in anns: if isinstance(ann, list): for instance in ann: if instance.get("iscrowd", 0) == 0: return True else: if ann.get("iscrowd", 0) == 0: return True return False dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])] num_after = len(dataset_dicts) logger = logging.getLogger(__name__) logger.info( "Removed {} images with no usable annotations. {} images left.".format( num_before - num_after, num_after ) ) return dataset_dicts def get_detection_dataset_dicts( dataset_names, filter_empty=True, proposal_files=None ): """ Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation. Args: dataset_names (str or list[str]): a dataset name or a list of dataset names filter_empty (bool): whether to filter out images without instance annotations proposal_files (list[str]): if given, a list of object proposal files that match each dataset in `dataset_names`. Returns: list[dict]: a list of dicts following the standard dataset dict format. """ if isinstance(dataset_names, str): dataset_names = [dataset_names] assert len(dataset_names) dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names] for dataset_name, dicts in zip(dataset_names, dataset_dicts): assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) if proposal_files is not None: assert len(dataset_names) == len(proposal_files) # load precomputed proposals from proposal files dataset_dicts = [ load_proposals_into_dataset(dataset_i_dicts, proposal_file) for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files) ] dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) has_instances = "annotations" in dataset_dicts[0] if filter_empty and has_instances: dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts, dataset_names) assert len(dataset_dicts), "No valid data found in {}.".format(",".join(dataset_names)) return dataset_dicts def _test_loader_from_config(cfg, dataset_name, mapper=None): """ Uses the given `dataset_name` argument (instead of the names in cfg), because the standard practice is to evaluate each test set individually (not combining them). """ if isinstance(dataset_name, str): dataset_name = [dataset_name] dataset = get_detection_dataset_dicts( dataset_name, filter_empty=False, proposal_files=None, ) if mapper is None: mapper_cfg = CfgNode({'INPUT': cfg['INPUT'], 'MODEL': cfg['MODEL'], 'DATASETS': cfg['DATASETS']}) mapper = DatasetMapper(mapper_cfg, False) assert cfg['TEST']['BATCH_SIZE_TOTAL'] % get_world_size() == 0, "Evaluation total batchsize is not divisible by gpu number" #batch_size = cfg['TEST']['BATCH_SIZE_TOTAL'] // get_world_size() batch_size = 1 return { "dataset": dataset, "mapper": mapper, "num_workers": cfg['DATALOADER']['NUM_WORKERS'], "sampler": InferenceSampler(len(dataset)), "batch_size": batch_size, } @configurable(from_config=_test_loader_from_config) def build_detection_test_loader( dataset: Union[List[Any], torchdata.Dataset], *, mapper: Callable[[Dict[str, Any]], Any], sampler: Optional[torchdata.Sampler] = None, batch_size: int = 1, num_workers: int = 0, collate_fn: Optional[Callable[[List[Any]], Any]] = None, ) -> torchdata.DataLoader: """ Similar to `build_detection_train_loader`, with default batch size = 1, and sampler = :class:`InferenceSampler`. This sampler coordinates all workers to produce the exact set of all samples. Args: dataset: a list of dataset dicts, or a pytorch dataset (either map-style or iterable). They can be obtained by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`. mapper: a callable which takes a sample (dict) from dataset and returns the format to be consumed by the model. When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``. sampler: a sampler that produces indices to be applied on ``dataset``. Default to :class:`InferenceSampler`, which splits the dataset across all workers. Sampler must be None if `dataset` is iterable. batch_size: the batch size of the data loader to be created. Default to 1 image per worker since this is the standard when reporting inference time in papers. num_workers: number of parallel data loading workers collate_fn: same as the argument of `torch.utils.data.DataLoader`. Defaults to do no collation and return a list of data. Returns: DataLoader: a torch DataLoader, that loads the given detection dataset, with test-time transformation and batching. Examples: :: data_loader = build_detection_test_loader( DatasetRegistry.get("my_test"), mapper=DatasetMapper(...)) # or, instantiate with a CfgNode: data_loader = build_detection_test_loader(cfg, "my_test") """ if isinstance(dataset, list): dataset = DatasetFromList(dataset, copy=False) if mapper is not None: dataset = MapDataset(dataset, mapper) if isinstance(dataset, torchdata.IterableDataset): assert sampler is None, "sampler must be None if dataset is IterableDataset" else: if sampler is None: sampler = InferenceSampler(len(dataset)) return torchdata.DataLoader( dataset, batch_size=batch_size, sampler=sampler, drop_last=False, num_workers=num_workers, collate_fn=trivial_batch_collator if collate_fn is None else collate_fn, ) def _train_loader_from_config(cfg, dataset_name, mapper, *, dataset=None, sampler=None): cfg_datasets = cfg['DATASETS'] cfg_dataloader = cfg['DATALOADER'] if dataset is None: dataset = get_detection_dataset_dicts( dataset_name, filter_empty=cfg_dataloader['FILTER_EMPTY_ANNOTATIONS'], proposal_files=cfg_datasets['PROPOSAL_FILES_TRAIN'] if cfg_dataloader['LOAD_PROPOSALS'] else None, ) if mapper is None: mapper = DatasetMapper(cfg, True) if sampler is None: sampler_name = cfg_dataloader['SAMPLER_TRAIN'] logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) sampler = TrainingSampler(len(dataset)) return { "dataset": dataset, "sampler": sampler, "mapper": mapper, "total_batch_size": cfg['TRAIN']['BATCH_SIZE_TOTAL'], "aspect_ratio_grouping": cfg_dataloader['ASPECT_RATIO_GROUPING'], "num_workers": cfg_dataloader['NUM_WORKERS'], } @configurable(from_config=_train_loader_from_config) def build_detection_train_loader( dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0 ): """ Build a dataloader for object detection with some default features. This interface is experimental. Args: dataset (list or torch.utils.data.Dataset): a list of dataset dicts, or a map-style pytorch dataset. They can be obtained by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`. mapper (callable): a callable which takes a sample (dict) from dataset and returns the format to be consumed by the model. When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``. sampler (torch.utils.data.sampler.Sampler or None): a sampler that produces indices to be applied on ``dataset``. Default to :class:`TrainingSampler`, which coordinates a random shuffle sequence across all workers. total_batch_size (int): total batch size across all workers. Batching simply puts data into a list. aspect_ratio_grouping (bool): whether to group images with similar aspect ratio for efficiency. When enabled, it requires each element in dataset be a dict with keys "width" and "height". num_workers (int): number of parallel data loading workers Returns: torch.utils.data.DataLoader: a dataloader. Each output from it is a ``list[mapped_element]`` of length ``total_batch_size / num_workers``, where ``mapped_element`` is produced by the ``mapper``. """ if isinstance(dataset, list): dataset = DatasetFromList(dataset, copy=False) if mapper is not None: dataset = MapDataset(dataset, mapper) if sampler is None: sampler = TrainingSampler(len(dataset)) assert isinstance(sampler, torch.utils.data.sampler.Sampler) return build_batch_data_loader( dataset, sampler, total_batch_size, aspect_ratio_grouping=aspect_ratio_grouping, num_workers=num_workers, ) def get_config_from_name(cfg, dataset_name): # adjust config according to dataset if 'refcoco' in dataset_name: cfg.update(cfg['REF']) return cfg elif 'cocomini' in dataset_name: cfg.update(cfg['DAVIS']) return cfg elif 'ytvos' in dataset_name: cfg.update(cfg['VOS']) return cfg elif 'ade600' in dataset_name: cfg.update(cfg['DAVIS']) return cfg elif 'openimage600' in dataset_name: cfg.update(cfg['DAVIS']) return cfg elif 'ade' in dataset_name: if 'ADE20K' in cfg.keys(): cfg.update(cfg['ADE20K']) return cfg elif 'imagenet' in dataset_name: if 'IMAGENET' in cfg.keys(): cfg.update(cfg['IMAGENET']) return cfg elif 'vlp' in dataset_name: cfg.update(cfg['VLP']) return cfg elif 'coco' in dataset_name: if 'COCO' in cfg.keys(): cfg.update(cfg['COCO']) return cfg elif 'voc' in dataset_name: cfg.update(cfg['VOC']) return cfg elif 'context' in dataset_name: cfg.update(cfg['CONTEXT']) return cfg elif 'sun' in dataset_name: cfg.update(cfg['SUN']) return cfg elif 'scan' in dataset_name: cfg.update(cfg['SCAN']) return cfg elif 'cityscape' in dataset_name: cfg.update(cfg['CITY']) return cfg elif 'bdd' in dataset_name: cfg.update(cfg['BDD']) return cfg elif 'tsv' in dataset_name: cfg.update(cfg['TSV']) return cfg elif 'phrasecut' in dataset_name: cfg.update(cfg['PHRASE']) return cfg elif 'object365' in dataset_name: cfg.update(cfg['OBJECT365']) return cfg elif 'openimage' in dataset_name: cfg.update(cfg['OPENIMAGE']) return cfg elif 'lvis' in dataset_name: cfg.update(cfg['LVIS']) return cfg elif 'seginw' in dataset_name: cfg.update(cfg['SEGINW']) return cfg elif 'sbd' in dataset_name: cfg.update(cfg['SBD']) return cfg elif 'davis' in dataset_name: cfg.update(cfg['DAVIS']) return cfg elif 'med_sam' in dataset_name: cfg.update(cfg['MedSAM']) return cfg elif 'biomed' in dataset_name: cfg.update(cfg['BioMed']) return cfg elif 'sam' in dataset_name: cfg.update(cfg['SAM']) return cfg else: assert False, "dataset not support." def build_eval_dataloader(cfg, ): dataloaders = [] for dataset_name in cfg['DATASETS']['TEST']: cfg = get_config_from_name(cfg, dataset_name) # adjust mapper according to dataset if dataset_name == 'imagenet_val': mapper = ImageNetDatasetMapper(cfg, False) elif dataset_name == 'bdd10k_val_sem_seg': mapper = BDDSemDatasetMapper(cfg, False) elif dataset_name in ["vlp_val", "vlp_captioning_val", "vlp_val2017", "vlp_captioning_val2017"]: mapper = VLPreDatasetMapper(cfg, False, dataset_name) elif dataset_name in ["scannet_21_val_seg", "scannet_38_val_seg", "scannet_41_val_seg"]: mapper = ScanNetSegDatasetMapper(cfg, False) elif dataset_name in ["scannet_21_panoptic_val", 'bdd10k_40_panoptic_val']: mapper = ScanNetPanoDatasetMapper(cfg, False) elif "pascalvoc_val" in dataset_name: mapper = PascalVOCSegDatasetMapperIX(cfg, False, dataset_name) elif 'sun' in dataset_name: mapper = SunRGBDSegDatasetMapper(cfg, False) elif 'refcoco' in dataset_name: mapper = RefCOCODatasetMapper(cfg, False) elif 'med_sam' in dataset_name: mapper = MedSAMDatasetMapper(cfg, False) elif 'biomed' in dataset_name: mapper = BioMedDatasetMapper(cfg, False) else: mapper = None dataloaders += [build_detection_test_loader(cfg, dataset_name, mapper=mapper)] return dataloaders def build_train_dataloader(cfg, ): dataset_names = cfg['DATASETS']['TRAIN'] loaders = {} for dataset_name in dataset_names: cfg = get_config_from_name(cfg, dataset_name) mapper_name = cfg['INPUT']['DATASET_MAPPER_NAME'] # Semantic segmentation dataset mapper if mapper_name == "mask_former_semantic": mapper = MaskFormerSemanticDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) # Panoptic segmentation dataset mapper elif mapper_name == "mask_former_panoptic": mapper = MaskFormerPanopticDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) # Instance segmentation dataset mapper elif mapper_name == "mask_former_instance": mapper = MaskFormerInstanceDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) # coco instance segmentation lsj new baseline elif mapper_name == "coco_instance_lsj": mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) # coco panoptic segmentation lsj new baseline elif mapper_name == "coco_panoptic_lsj": mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) elif mapper_name == "vlpretrain": mapper = VLPreDatasetMapper(cfg, True, dataset_name) loaders['vlp'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) elif mapper_name == "refcoco": mapper = RefCOCODatasetMapper(cfg, True) loaders['ref'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) elif mapper_name == "coco_interactive": mapper = COCOPanopticInteractiveDatasetMapper(cfg, True) loaders['coco'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) elif mapper_name == "medsam_interactive": mapper = MedSAMDatasetMapper(cfg, True) loaders['med_sam'] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) elif mapper_name == "biomed_interactive": mapper = BioMedDatasetMapper(cfg, True) name_key = dataset_name.split("_")[1] loaders[name_key] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) else: mapper = None loaders[dataset_name] = build_detection_train_loader(cfg, dataset_name=dataset_name, mapper=mapper) if len(loaders) == 1 or not cfg['LOADER'].get('JOINT', False): return list(loaders.values())[0] else: sample_prob = cfg['LOADER'].get('SAMPLE_PROB', 'prop') mixing_level = cfg['LOADER'].get('MIXING_LEVEL', 1) return JointLoader(loaders, key_dataset=cfg['LOADER'].get('KEY_DATASET', 'coco'), sample_prob=sample_prob, mixing_level=mixing_level) def build_evaluator(cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg["SAVE_DIR"], "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type # semantic segmentation if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) # instance segmentation if evaluator_type == "coco": evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) cfg_model_decoder_test = cfg["MODEL"]["DECODER"]["TEST"] # panoptic segmentation if evaluator_type in [ "coco_panoptic_seg", "ade20k_panoptic_seg", "cityscapes_panoptic_seg", "mapillary_vistas_panoptic_seg", "scannet_panoptic_seg", "bdd_panoptic_pano" ]: if cfg_model_decoder_test["PANOPTIC_ON"]: evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) # COCO if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]) or evaluator_type == "object365_od": evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if (evaluator_type == "coco_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]) or evaluator_type == "coco_sem_seg": evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder)) # Mapillary Vistas if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]: evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg_model_decoder_test["SEMANTIC_ON"]: evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder)) # Cityscapes if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() > comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() > comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name) if evaluator_type == "cityscapes_panoptic_seg": if cfg_model_decoder_test["SEMANTIC_ON"]: assert ( torch.cuda.device_count() > comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) if cfg_model_decoder_test["INSTANCE_ON"]: assert ( torch.cuda.device_count() > comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." evaluator_list.append(CityscapesInstanceEvaluator(dataset_name)) # ADE20K if evaluator_type == "ade20k_panoptic_seg" and cfg_model_decoder_test["INSTANCE_ON"]: evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder)) # SEGINW if evaluator_type == "seginw" and cfg_model_decoder_test["INSTANCE_ON"]: evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder)) # LVIS if evaluator_type == "lvis": return LVISEvaluator(dataset_name, output_dir=output_folder) # Classification if evaluator_type == "classification": evaluator_list.append(ClassificationEvaluator(dataset_name, output_folder)) # Retrieval if evaluator_type in ["retrieval"]: evaluator_list.append(RetrievalEvaluator(dataset_name, output_folder, cfg['MODEL']['DECODER']['RETRIEVAL']['ENSEMBLE'])) if evaluator_type == "captioning": evaluator_list.append(CaptioningEvaluator(dataset_name, output_folder, MetadataCatalog.get(dataset_name).gt_json)) if evaluator_type in ["grounding_refcoco", "grounding_phrasecut", "grounding_spatial", "grounding_entity"]: evaluator_list.append(GroundingEvaluator(dataset_name)) # Interactive if evaluator_type in ["interactive", "interactive_grounding"]: evaluator_list.append(InteractiveEvaluator(dataset_name, output_dir=output_folder, max_clicks=cfg['STROKE_SAMPLER']['EVAL']['MAX_ITER'], iou_iter=cfg['STROKE_SAMPLER']['EVAL']['IOU_ITER'])) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list)