# # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py import html import inspect import math import re import urllib.parse as ul from typing import Callable, Dict, List, Optional, Tuple, Union from abc import ABC, abstractmethod import torch import torch.nn.functional as F from torch import Tensor from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DPMSolverMultistepScheduler from diffusers.utils import ( BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, replace_example_docstring, ) from diffusers.utils.torch_utils import randn_tensor from einops import rearrange from transformers import T5EncoderModel, T5Tokenizer from xora.models.transformers.transformer3d import Transformer3DModel from xora.models.transformers.symmetric_patchifier import Patchifier from xora.models.autoencoders.vae_encode import get_vae_size_scale_factor, vae_decode, vae_encode from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from xora.schedulers.rf import TimestepShifter from xora.utils.conditioning_method import ConditioningMethod logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import PixArtAlphaPipeline >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too. >>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) >>> # Enable memory optimizations. >>> pipe.enable_model_cpu_offload() >>> prompt = "A small cactus with a happy face in the Sahara desert." >>> image = pipe(prompt).images[0] ``` """ ASPECT_RATIO_1024_BIN = { "0.25": [512.0, 2048.0], "0.28": [512.0, 1856.0], "0.32": [576.0, 1792.0], "0.33": [576.0, 1728.0], "0.35": [576.0, 1664.0], "0.4": [640.0, 1600.0], "0.42": [640.0, 1536.0], "0.48": [704.0, 1472.0], "0.5": [704.0, 1408.0], "0.52": [704.0, 1344.0], "0.57": [768.0, 1344.0], "0.6": [768.0, 1280.0], "0.68": [832.0, 1216.0], "0.72": [832.0, 1152.0], "0.78": [896.0, 1152.0], "0.82": [896.0, 1088.0], "0.88": [960.0, 1088.0], "0.94": [960.0, 1024.0], "1.0": [1024.0, 1024.0], "1.07": [1024.0, 960.0], "1.13": [1088.0, 960.0], "1.21": [1088.0, 896.0], "1.29": [1152.0, 896.0], "1.38": [1152.0, 832.0], "1.46": [1216.0, 832.0], "1.67": [1280.0, 768.0], "1.75": [1344.0, 768.0], "2.0": [1408.0, 704.0], "2.09": [1472.0, 704.0], "2.4": [1536.0, 640.0], "2.5": [1600.0, 640.0], "3.0": [1728.0, 576.0], "4.0": [2048.0, 512.0], } ASPECT_RATIO_512_BIN = { "0.25": [256.0, 1024.0], "0.28": [256.0, 928.0], "0.32": [288.0, 896.0], "0.33": [288.0, 864.0], "0.35": [288.0, 832.0], "0.4": [320.0, 800.0], "0.42": [320.0, 768.0], "0.48": [352.0, 736.0], "0.5": [352.0, 704.0], "0.52": [352.0, 672.0], "0.57": [384.0, 672.0], "0.6": [384.0, 640.0], "0.68": [416.0, 608.0], "0.72": [416.0, 576.0], "0.78": [448.0, 576.0], "0.82": [448.0, 544.0], "0.88": [480.0, 544.0], "0.94": [480.0, 512.0], "1.0": [512.0, 512.0], "1.07": [512.0, 480.0], "1.13": [544.0, 480.0], "1.21": [544.0, 448.0], "1.29": [576.0, 448.0], "1.38": [576.0, 416.0], "1.46": [608.0, 416.0], "1.67": [640.0, 384.0], "1.75": [672.0, 384.0], "2.0": [704.0, 352.0], "2.09": [736.0, 352.0], "2.4": [768.0, 320.0], "2.5": [800.0, 320.0], "3.0": [864.0, 288.0], "4.0": [1024.0, 256.0], } # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class VideoPixArtAlphaPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using PixArt-Alpha. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. PixArt-Alpha uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`Transformer2DModel`]): A text conditioned `Transformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder"] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: Transformer3DModel, scheduler: DPMSolverMultistepScheduler, patchifier: Patchifier, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, patchifier=patchifier, ) self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(self.vae) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py def mask_text_embeddings(self, emb, mask): if emb.shape[0] == 1: keep_index = mask.sum().item() return emb[:, :, :keep_index, :], keep_index else: masked_feature = emb * mask[:, None, :, None] return masked_feature, emb.shape[2] # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, clean_caption: bool = False, **kwargs, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For PixArt-Alpha, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" string. clean_caption (bool, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. """ if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # See Section 3.1. of the paper. # FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config max_length = 128 # TPU supports only lengths multiple of 128 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device) prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_images_per_prompt) negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) else: negative_prompt_embeds = None negative_prompt_attention_mask = None return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) logger.warn("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) logger.warn("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents( self, batch_size, num_latent_channels, num_patches, dtype, device, generator, latents=None, latents_mask=None ): shape = ( batch_size, num_patches // math.prod(self.patchifier.patch_size), num_latent_channels, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) elif latents_mask is not None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = latents * latents_mask[..., None] + noise * (1 - latents_mask[..., None]) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @staticmethod def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: """Returns binned height and width.""" ar = float(height / width) closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) default_hw = ratios[closest_ratio] return int(default_hw[0]), int(default_hw[1]) @staticmethod def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: n_frames, orig_height, orig_width = samples.shape[-3:] # Check if resizing is needed if orig_height != new_height or orig_width != new_width: ratio = max(new_height / orig_height, new_width / orig_width) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) # Resize samples = rearrange(samples, "b c n h w -> (b n) c h w") samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False) samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames) # Center Crop start_x = (resized_width - new_width) // 2 end_x = start_x + new_width start_y = (resized_height - new_height) // 2 end_y = start_y + new_height samples = samples[..., start_y:end_y, start_x:end_x] return samples @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, height: int, width: int, num_frames: int, frame_rate: float, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, clean_caption: bool = True, media_items: Optional[torch.FloatTensor] = None, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. use_resolution_binning (`bool` defaults to `True`): If set to `True`, the requested height and width are first mapped to the closest resolutions using `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) is_video = kwargs.get("is_video", False) self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) # 3b. Encode and prepare conditioning data self.video_scale_factor = self.video_scale_factor if is_video else 1 conditioning_method = kwargs.get("conditioning_method", None) vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) init_latents, conditioning_mask = self.prepare_conditioning( media_items, num_frames, height, width, conditioning_method, vae_per_channel_normalize ) # 4. Prepare latents. latent_height = height // self.vae_scale_factor latent_width = width // self.vae_scale_factor latent_num_frames = num_frames // self.video_scale_factor if isinstance(self.vae, CausalVideoAutoencoder) and is_video: latent_num_frames += 1 latent_frame_rate = frame_rate / self.video_scale_factor num_latent_patches = latent_height * latent_width * latent_num_frames latents = self.prepare_latents( batch_size=batch_size * num_images_per_prompt, num_latent_channels=self.transformer.config.in_channels, num_patches=num_latent_patches, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=init_latents, latents_mask=conditioning_mask, ) if conditioning_mask is not None and is_video: assert num_images_per_prompt == 1 conditioning_mask = torch.cat([conditioning_mask] * 2) if do_classifier_free_guidance else conditioning_mask # 5. Prepare timesteps retrieve_timesteps_kwargs = {} if isinstance(self.scheduler, TimestepShifter): retrieve_timesteps_kwargs["samples"] = latents timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_frame_rates = ( torch.ones(latent_model_input.shape[0], 1, device=latent_model_input.device) * latent_frame_rate ) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latent_model_input.shape[0]).unsqueeze(-1) scale_grid = ( (1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor) if self.transformer.use_rope else None ) indices_grid = self.patchifier.get_grid( orig_num_frames=latent_num_frames, orig_height=latent_height, orig_width=latent_width, batch_size=latent_model_input.shape[0], scale_grid=scale_grid, device=latents.device, ) if conditioning_mask is not None: current_timestep = current_timestep * (1 - conditioning_mask) # predict noise model_output noise_pred = self.transformer( latent_model_input.to(self.transformer.dtype), indices_grid, encoder_hidden_states=prompt_embeds.to(self.transformer.dtype), encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) current_timestep, _ = current_timestep.chunk(2) # learned sigma if self.transformer.config.out_channels // 2 == self.transformer.config.in_channels: noise_pred = noise_pred.chunk(2, dim=1)[0] # compute previous image: x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t if current_timestep is None else current_timestep, latents, **extra_step_kwargs, return_dict=False, )[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback_on_step_end is not None: callback_on_step_end(self, i, t, {}) latents = self.patchifier.unpatchify( latents=latents, output_height=latent_height, output_width=latent_width, output_num_frames=latent_num_frames, out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size), ) if output_type != "latent": image = vae_decode( latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"] ) image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image) def prepare_conditioning( self, media_items: torch.Tensor, num_frames: int, height: int, width: int, method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL, vae_per_channel_normalize: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Prepare the conditioning data for the video generation. If an input media item is provided, encode it and set the conditioning_mask to indicate which tokens to condition on. Input media item should have the same height and width as the generated video. Args: media_items (torch.Tensor): media items to condition on (images or videos) num_frames (int): number of frames to generate height (int): height of the generated video width (int): width of the generated video method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL. vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask """ if media_items is None or method == ConditioningMethod.UNCONDITIONAL: return None, None assert media_items.ndim == 5 assert height == media_items.shape[-2] and width == media_items.shape[-1] # Encode the input video and repeat to the required number of frame-tokens init_latents = vae_encode( media_items.to(dtype=self.vae.dtype, device=self.vae.device), self.vae, vae_per_channel_normalize=vae_per_channel_normalize, ).float() init_len, target_len = init_latents.shape[2], num_frames // self.video_scale_factor if isinstance(self.vae, CausalVideoAutoencoder): target_len += 1 init_latents = init_latents[:, :, :target_len] if target_len > init_len: repeat_factor = (target_len + init_len - 1) // init_len # Ceiling division init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[:, :, :target_len] # Prepare the conditioning mask (1.0 = condition on this token) b, n, f, h, w = init_latents.shape conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device) if method in [ConditioningMethod.FIRST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: conditioning_mask[:, :, 0] = 1.0 if method in [ConditioningMethod.LAST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: conditioning_mask[:, :, -1] = 1.0 # Patchify the init latents and the mask conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1) init_latents = self.patchifier.patchify(latents=init_latents) return init_latents, conditioning_mask