# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py import math from dataclasses import dataclass from typing import Any, Dict, List, Optional import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.embeddings import PixArtAlphaTextProjection from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormSingle from diffusers.utils import BaseOutput, is_torch_version from torch import nn from xora.models.transformers.attention import BasicTransformerBlock @dataclass class Transformer3DModelOutput(BaseOutput): """ The output of [`Transformer2DModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability distributions for the unnoised latent pixels. """ sample: torch.FloatTensor class Transformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, num_vector_embeds: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale' standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, attention_type: str = "default", caption_channels: int = None, project_to_2d_pos: bool = False, use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention') qk_norm: Optional[str] = None, positional_embedding_type: str = "absolute", positional_embedding_theta: Optional[float] = None, positional_embedding_max_pos: Optional[List[int]] = None, timestep_scale_multiplier: Optional[float] = None, ): super().__init__() self.use_tpu_flash_attention = use_tpu_flash_attention # FIXME: push config down to the attention modules self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.inner_dim = inner_dim self.project_to_2d_pos = project_to_2d_pos self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True) self.positional_embedding_type = positional_embedding_type self.positional_embedding_theta = positional_embedding_theta self.positional_embedding_max_pos = positional_embedding_max_pos self.use_rope = self.positional_embedding_type == "rope" self.timestep_scale_multiplier = timestep_scale_multiplier if self.positional_embedding_type == "absolute": embed_dim_3d = math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim if self.project_to_2d_pos: self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False) self._init_to_2d_proj_weights(self.to_2d_proj) elif self.positional_embedding_type == "rope": if positional_embedding_theta is None: raise ValueError( "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined" ) if positional_embedding_max_pos is None: raise ValueError( "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined" ) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, double_self_attention=double_self_attention, upcast_attention=upcast_attention, adaptive_norm=adaptive_norm, standardization_norm=standardization_norm, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, attention_type=attention_type, use_tpu_flash_attention=use_tpu_flash_attention, qk_norm=qk_norm, use_rope=self.use_rope, ) for d in range(num_layers) ] ) # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.proj_out = nn.Linear(inner_dim, self.out_channels) # 5. PixArt-Alpha blocks. self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) if adaptive_norm == "single_scale": # Use 4 channels instead of the 6 for the PixArt-Alpha scale + shift ada norm. self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True) self.caption_projection = None if caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @staticmethod def _init_to_2d_proj_weights(linear_layer): input_features = linear_layer.weight.data.size(1) output_features = linear_layer.weight.data.size(0) # Start with a zero matrix identity_like = torch.zeros((output_features, input_features)) # Fill the diagonal with 1's as much as possible min_features = min(output_features, input_features) identity_like[:min_features, :min_features] = torch.eye(min_features) linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device) def get_fractional_positions(self, indices_grid): fractional_positions = torch.stack( [indices_grid[:, i] / self.positional_embedding_max_pos[i] for i in range(3)], dim=-1 ) return fractional_positions def precompute_freqs_cis(self, indices_grid, spacing="exp"): dtype = self.dtype dim = self.inner_dim theta = self.positional_embedding_theta fractional_positions = self.get_fractional_positions(indices_grid) start = 1 end = theta device = fractional_positions.device if spacing == "exp": indices = theta ** ( torch.linspace(math.log(start, theta), math.log(end, theta), dim // 6, device=device, dtype=dtype) ) indices = indices.to(dtype=dtype) elif spacing == "exp_2": indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim) indices = indices.to(dtype=dtype) elif spacing == "linear": indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype) elif spacing == "sqrt": indices = torch.linspace(start**2, end**2, dim // 6, device=device, dtype=dtype).sqrt() indices = indices * math.pi / 2 if spacing == "exp_2": freqs = (indices * fractional_positions.unsqueeze(-1)).transpose(-1, -2).flatten(2) else: freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2) cos_freq = freqs.cos().repeat_interleave(2, dim=-1) sin_freq = freqs.sin().repeat_interleave(2, dim=-1) if dim % 6 != 0: cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) return cos_freq, sin_freq def forward( self, hidden_states: torch.Tensor, indices_grid: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # for tpu attention offload 2d token masks are used. No need to transform. if not self.use_tpu_flash_attention: # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input hidden_states = self.patchify_proj(hidden_states) if self.timestep_scale_multiplier: timestep = self.timestep_scale_multiplier * timestep if self.positional_embedding_type == "rope": freqs_cis = self.precompute_freqs_cis(indices_grid) else: raise NotImplementedError("Only rope pos embed supported.") batch_size = hidden_states.shape[0] timestep, embedded_timestep = self.adaln_single( timestep.flatten(), {"resolution": None, "aspect_ratio": None}, batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) # Second dimension is 1 or number of tokens (if timestep_per_token) timestep = timestep.view(batch_size, -1, timestep.shape[-1]) embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1]) # 2. Blocks if self.caption_projection is not None: batch_size = hidden_states.shape[0] encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) for block in self.transformer_blocks: if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, freqs_cis, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, freqs_cis=freqs_cis, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) if not return_dict: return (hidden_states,) return Transformer3DModelOutput(sample=hidden_states)