import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import accelerate # Load the model and tokenizer model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0" accelerator = accelerate.Accelerator() model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=False, device_map="auto", offload_folder="/tmp") model = accelerator.prepare(model) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_prompt(instruction, user_input): """ Generates a prompt for the model to ensure it responds with the intent in the same language as the input. """ return f""" ### Instruction: {instruction} ### Input: {user_input} ### Response: """ def get_model_response(user_input, instruction="Identify and summarize the core intent in the same language:"): """ Gets the model's response, ensuring it matches the input language and focuses on extracting a concise intent. """ input_text = generate_prompt(instruction, user_input) inputs = tokenizer([input_text], return_tensors="pt") with accelerator.distribute_inputs_to_prepared(model.device_map, inputs): outputs = model.generate(**inputs, max_new_tokens=300, use_cache=True) response = tokenizer.batch_decode(accelerator.gather(outputs))[0] return response.split("### Response:")[-1].strip() # Gradio interface iface = gr.Interface( fn=get_model_response, inputs=[ gr.inputs.Textbox(label="Input Text"), gr.inputs.Textbox(label="Instruction", default="Identify and summarize the core intent in the same language:"), ], outputs=gr.outputs.Textbox(label="Response"), title="Intent Summarization", description="Summarize the core intent of the input text in the same language.", ) iface.launch()