import os import gradio as gr import pytesseract from Plan.AiLLM import llm_recognition from Plan.pytesseractOCR import ocr_recognition from Preprocess.preprocessImg import preprocess_image001 langs = [] choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # If you don't have tesseract executable in your PATH, include the following: # pytesseract.pytesseract.tesseract_cmd = r'' # Example tesseract_cmd = r'C:\Program Files (x86)\Tesseract-OCR\tesseract' # Simple image to string # print(pytesseract.image_to_string(Image.open('eurotext.png'))) # # French text image to string # print(pytesseract.image_to_string(Image.open('test-european.jpg'), lang='fra')) # # Get bounding box estimates # print(pytesseract.image_to_boxes(Image.open('test.png'))) # # Get verbose data including boxes, confidences, line and page numbers # print(pytesseract.image_to_data(Image.open('test.png'))) # # Get information about orientation and script detection # print(pytesseract.image_to_osd(Image.open('test.png')) # 取得所有語言清單 languages = os.popen('tesseract --list-langs').read().split('\n')[1:-1] print(' ======================================================== ') # print(' ###### choices:' + choices) # print(' ###### GET ENV - TESSDATA_PREFIX:' + os.getenv('TESSDATA_PREFIX')) # print(' ###### OS - TESSDATA_PREFIX:' + os.environ['TESSDATA_PREFIX']) # os.environ['TESSDATA_PREFIX'] = os.getenv('TESSDATA_PREFIX') # print(' ###### Tesseract_Cmd:' + pytesseract.pytesseract.tesseract_cmd) # pytesseract.pytesseract.tesseract_cmd = os.getenv('TESSDATA_PREFIX') print(' ======================================================== ') def preprocess_and_ocr(image, validation_type, language): preprocessed_image = preprocess_image001(image) ocr_result = ocr_recognition(preprocessed_image, validation_type, language) return preprocessed_image, ocr_result def preprocess_and_llm(image, validation_type, language): preprocessed_image = preprocess_image001(image) llm_result = llm_recognition(preprocessed_image, validation_type, language) return preprocessed_image, llm_result with gr.Blocks() as demo: with gr.Row(): image_input = gr.Image(type="pil", label="上傳圖片") preprocess_output = gr.Image(type="pil", label="預處理後的圖片") with gr.Row(): validation_type = gr.Dropdown(choices=["身分證正面", "身分證反面"], label="驗證類別") language_dropdown = gr.Dropdown(choices=languages, value="chi_tra", label="語言") with gr.Row(): ocr_button = gr.Button("使用 OCR") llm_button = gr.Button("使用 AI LLM") with gr.Row(): ocr_output = gr.JSON(label="OCR 解析結果") llm_output = gr.JSON(label="AI LLM 解析結果") ocr_button.click(preprocess_and_ocr, inputs=[image_input, validation_type, language_dropdown], outputs=[preprocess_output, ocr_output]) llm_button.click(preprocess_and_llm, inputs=[image_input, validation_type, language_dropdown], outputs=[preprocess_output, llm_output]) demo.launch(share=False)