import cv2 import numpy as np from PIL import Image, ImageEnhance def PreprocessImg(image): if image is None: raise ValueError("尚未上傳圖片!") # 方案一 pre_img_001 = preprocess_image001(image) # 方案二 pre_img_002 = preprocess_image002(image) # 方案三 pre_img_003 = preprocess_image003(image) # 方案四 pre_img_004 = preprocess_image004(image) # 方案五 pre_img_005 = preprocess_image005(image) return pre_img_001, pre_img_002, pre_img_003, pre_img_004, pre_img_005 # 方案一 def preprocess_image001(image): # 將影像轉換為 NumPy 數組 image = np.array(image) # 轉為灰階影像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 調整對比度 enhancer = ImageEnhance.Contrast(Image.fromarray(gray)) enhanced_image = enhancer.enhance(2) # 二值化 _, binary = cv2.threshold(np.array(enhanced_image), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 去雜訊 denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21) return Image.fromarray(denoised) # 方案二 def preprocess_image002(image): # 將 PIL Image 轉換為 numpy array image_np = np.array(image) # 使用 OpenCV 進行預處理 gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) # 灰階化 gray = cv2.bilateralFilter(gray, 11, 17, 17) # 雙邊濾波去噪 edged = cv2.Canny(gray, 30, 200) # 邊緣檢測 return Image.fromarray(edged) # 方案三:自適應門檻和形態學變換 def preprocess_image003(image): # 將 PIL Image 轉換為 numpy array image_np = np.array(image) # 轉為灰階影像 gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) # 自適應門檻處理 adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # 形態學變換 (開運算) 去除小噪點 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) morph = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_OPEN, kernel) return Image.fromarray(morph) # 方案四:CLAHE(限制對比度自適應直方圖均衡) def preprocess_image004(image): # 將 PIL Image 轉換為 numpy array image_np = np.array(image) # 轉為灰階影像 gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) # 應用 CLAHE clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) clahe_image = clahe.apply(gray) # 二值化 _, binary = cv2.threshold(clahe_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return Image.fromarray(binary) # 方案五:直方圖均衡化和高斯模糊 def preprocess_image005(image): # 將 PIL Image 轉換為 numpy array image_np = np.array(image) # 轉為灰階影像 gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) # 直方圖均衡化 equalized = cv2.equalizeHist(gray) # 高斯模糊 blurred = cv2.GaussianBlur(equalized, (5, 5), 0) # 二值化 _, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return Image.fromarray(binary) # 方案六:自適應去噪與銳化 def preprocess_image006(image): # 將 PIL Image 轉換為 numpy array image_np = np.array(image) # 轉為灰階影像 gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) # 自適應去噪 denoised = cv2.fastNlMeansDenoising(gray, None, 30, 7, 21) # 銳化 kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) sharpened = cv2.filter2D(denoised, -1, kernel) # 二值化 _, binary = cv2.threshold(sharpened, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return Image.fromarray(binary)