import torch import torch.nn as nn import math from collections import OrderedDict ################## AlexNet ################## def bn_relu(inplanes): return nn.Sequential(nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True)) def bn_relu_pool(inplanes, kernel_size=3, stride=2): return nn.Sequential(nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=kernel_size, stride=stride)) class AlexNet(nn.Module): def __init__(self, num_classes=1): super(AlexNet, self).__init__() self.conv1 = nn.Conv2d(3, 96, kernel_size=11, stride=4, bias=False) self.relu_pool1 = bn_relu_pool(inplanes=96) self.conv2 = nn.Conv2d(96, 192, kernel_size=5, padding=2, groups=2, bias=False) self.relu_pool2 = bn_relu_pool(inplanes=192) self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1, groups=2, bias=False) self.relu3 = bn_relu(inplanes=384) self.conv4 = nn.Conv2d(384, 384, kernel_size=3, padding=1, groups=2, bias=False) self.relu4 = bn_relu(inplanes=384) self.conv5 = nn.Conv2d(384, 256, kernel_size=3, padding=1, groups=2, bias=False) self.relu_pool5 = bn_relu_pool(inplanes=256) # classifier self.conv6 = nn.Conv2d(256, 256, kernel_size=5, groups=2, bias=False) self.relu6 = bn_relu(inplanes=256) self.conv7 = nn.Conv2d(256, num_classes, kernel_size=1, bias=False) def forward(self, x): x = self.conv1(x) x = self.relu_pool1(x) x = self.conv2(x) x = self.relu_pool2(x) x = self.conv3(x) x = self.relu3(x) x = self.conv4(x) x = self.relu4(x) x = self.conv5(x) x = self.relu_pool5(x) x = self.conv6(x) x = self.relu6(x) x = self.conv7(x) x = x.view(x.size(0), -1) return x ################## ResNet ################## def conv3x3(in_planes, out_planes, stride=1): # 3x3 convolution with padding return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() m = OrderedDict() m['conv1'] = conv3x3(inplanes, planes, stride) m['bn1'] = nn.BatchNorm2d(planes) m['relu1'] = nn.ReLU(inplace=True) m['conv2'] = conv3x3(planes, planes) m['bn2'] = nn.BatchNorm2d(planes) self.group1 = nn.Sequential(m) self.relu = nn.Sequential(nn.ReLU(inplace=True)) self.downsample = downsample def forward(self, x): if self.downsample is not None: residual = self.downsample(x) else: residual = x out = self.group1(x) + residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() m = OrderedDict() m['conv1'] = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) m['bn1'] = nn.BatchNorm2d(64) m['relu1'] = nn.ReLU(inplace=True) m['maxpool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.group1= nn.Sequential(m) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.Sequential(nn.AvgPool2d(7)) self.group2 = nn.Sequential( OrderedDict([ ('fullyconnected', nn.Linear(512 * block.expansion, num_classes)) ]) ) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): torch.nn.init.xavier_uniform_(m.weight.data) torch.nn.init.constant_(m.bias.data, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.group1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.group2(x) return x