import torch import torchvision.transforms as transforms from PIL import Image import Nets def load_model(pretrained_dict, new): model_dict = new.state_dict() # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in pretrained_dict['state_dict'].items() if k in model_dict} # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) new.load_state_dict(model_dict) # if torch.cuda.is_available(): # device = torch.device("cuda") # else: device = torch.device("cpu") print("use cpu") # model_ckpt_path = "./models/resnet18.pth" model_ckpt_path = "https://huggingface.co/M4869/beauty_prediction_fpb5k/blob/main/resnet18.pth" net = Nets.ResNet(block=Nets.BasicBlock, layers=[2, 2, 2, 2], num_classes=1).to(device) load_model(torch.load(model_ckpt_path, encoding='latin1'), net) net.eval() transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def fun(img_path): img = Image.open(img_path).convert('RGB') img = transform(img) with torch.no_grad(): img = img.unsqueeze(0).to(device) output = net(img).squeeze(1).cpu().numpy()[0] return output # def main(): # for i in range(6, 7): # img = Image.open("./data2/%d.jpg" % i).convert('RGB') # img = transform(img) # # with torch.no_grad(): # img = img.unsqueeze(0).to(device) # output = net(img).squeeze(1).cpu().numpy()[0] # print(i, output * 20) # if __name__ == '__main__': # main()