import pdb import torch import torchvision.transforms as transforms from PIL import Image import Nets from huggingface_hub import hf_hub_download def load_model(pretrained_dict, new): model_dict = new.state_dict() # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in pretrained_dict['state_dict'].items() if k in model_dict} # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) new.load_state_dict(model_dict) device = torch.device("cpu") print("use cpu") net = Nets.ResNet(block=Nets.BasicBlock, layers=[2, 2, 2, 2], num_classes=1).to(device) model_ckpt_path = hf_hub_download(repo_id="M4869/beauty_prediction_fpb5k", filename="resnet18.pth") # /home/my/.cache/huggingface/hub/models--google--pegasus-xsum/snapshots/8d8ffc158a3bee9fbb03afacdfc347c823c5ec8b/config.json load_model(torch.load(model_ckpt_path, encoding='latin1', map_location=torch.device('cpu')), net) net.eval() transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def fun(img_path): img = Image.open(img_path).convert('RGB') img = transform(img) with torch.no_grad(): img = img.unsqueeze(0).to(device) output = net(img).squeeze(1).cpu().numpy()[0] v = float("%.1f" % (output * 20)) return min(100, v + 15.0)